mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Add fully implicit solver for incomp two phase with polymer
and the polymer properties based on AD.
This commit is contained in:
parent
eded8f735c
commit
080116c66b
485
opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.cpp
Normal file
485
opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.cpp
Normal file
@ -0,0 +1,485 @@
|
||||
/**/
|
||||
|
||||
#include <opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.hpp>
|
||||
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
#include <opm/polymer/fullyimplicit/AutoDiffBlock.hpp>
|
||||
#include <opm/polymer/fullyimplicit/AutoDiffHelpers.hpp>
|
||||
#include <opm/polymer/fullyimplicit/IncompPropsAdInterface.hpp>
|
||||
#include <opm/polymer/PolymerProperties.hpp>
|
||||
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/props/rock/RockCompressibility.hpp>
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <Eigen/Eigen>
|
||||
#include <algorithm>
|
||||
namespace Opm {
|
||||
|
||||
namespace {
|
||||
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
struct Chop01 {
|
||||
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
|
||||
};
|
||||
|
||||
}//anonymous namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
FullyImplicitTwoPhaseSolver(const UnstructuredGrid& grid,
|
||||
const IncompPropsAdInterface& fluid,
|
||||
const PolymerProperties& polymer_props,
|
||||
const PolymerPropsAd& polymer_props_ad,
|
||||
const LinearSolverInterface& linsolver)
|
||||
: grid_ (grid)
|
||||
, fluid_(fluid)
|
||||
, polymer_props_ (polymer_props)
|
||||
, polymer_props_ad_ (polymer_props_ad_)
|
||||
, linsolver_(linsolver)
|
||||
, cells_ (buildAllCells(grid.number_of_cells))
|
||||
, ops_(grid)
|
||||
, residual_(std::vector<ADB>(fluid.numPhases() + 1, ADB::null()))
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
step(const double dt,
|
||||
PolymerState& x,
|
||||
const std::vector<double>& src)
|
||||
{
|
||||
|
||||
V pvol(grid_.number_of_cells);
|
||||
// Pore volume
|
||||
const typename V::Index nc = grid_.number_of_cells;
|
||||
V rho = V::Constant(pvol.size(), 1, *fluid_.porosity());
|
||||
std::transform(grid_.cell_volumes, grid_.cell_volumes + nc,
|
||||
rho.data(), pvol.data(),
|
||||
std::multiplies<double>());
|
||||
|
||||
const V pvdt = pvol / dt;
|
||||
|
||||
const SolutionState old_state = constantState(x);
|
||||
const double atol = 1.0e-12;
|
||||
const double rtol = 5.0e-8;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(pvdt, old_state, x, src);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
std::cout << "\nIteration Residual\n"
|
||||
<< std::setw(9) << it << std::setprecision(9)
|
||||
<< std::setw(18) << r0 << std::endl;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
const V dx = solveJacobianSystem();
|
||||
updateState(dx, x);
|
||||
|
||||
assemble(pvdt, old_state, x, src);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
std::cout << std::setw(9) << it << std::setprecision(9)
|
||||
<< std::setw(18) << r << std::endl;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
|
||||
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::SolutionState::SolutionState(const int np)
|
||||
: pressure ( ADB::null())
|
||||
, saturation (np, ADB::null())
|
||||
, concentration ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::SolutionState
|
||||
FullyImplicitTwoPhaseSolver::constantState(const PolymerState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
SolutionState state(np);
|
||||
|
||||
// Pressure.
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc);
|
||||
state.pressure = ADB::constant(p);
|
||||
|
||||
// Saturation.
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
state.saturation[phase] = ADB::constant(s_all.col(phase));
|
||||
// state.saturation[1] = ADB::constant(s_all.col(1));
|
||||
}
|
||||
|
||||
// Concentration
|
||||
|
||||
assert(not x.concentration().empty());
|
||||
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
|
||||
|
||||
state.concentration = ADB::constant(c);
|
||||
return state;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::SolutionState
|
||||
FullyImplicitTwoPhaseSolver::variableState(const PolymerState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
std::vector<V> vars0;
|
||||
vars0.reserve(np);
|
||||
|
||||
// Initial pressure.
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc);
|
||||
vars0.push_back(p);
|
||||
|
||||
// Initial saturation.
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
const V sw = s_all.col(0);
|
||||
vars0.push_back(sw);
|
||||
|
||||
// Initial saturation.
|
||||
assert (not x.concentration().empty());
|
||||
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
|
||||
vars0.push_back(c);
|
||||
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
|
||||
SolutionState state(np);
|
||||
|
||||
// Pressure.
|
||||
int nextvar = 0;
|
||||
state.pressure = vars[ nextvar++ ];
|
||||
|
||||
// Saturation.
|
||||
const std::vector<int>& bpat = vars[0].blockPattern();
|
||||
{
|
||||
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
|
||||
ADB& sw = vars[ nextvar++ ];
|
||||
state.saturation[0] = sw;
|
||||
so = so - sw;
|
||||
state.saturation[1] = so;
|
||||
}
|
||||
|
||||
// Concentration.
|
||||
state.concentration = vars[nextvar++];
|
||||
|
||||
assert(nextvar == int(vars.size()));
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
assemble(const V& pvdt,
|
||||
const SolutionState& old_state,
|
||||
const PolymerState& x ,
|
||||
const std::vector<double>& src)
|
||||
{
|
||||
// Create the primary variables.
|
||||
const SolutionState state = variableState(x);
|
||||
|
||||
// -------- Mass balance equations for water and oil --------
|
||||
const V trans = subset(transmissibility(), ops_.internal_faces);
|
||||
const std::vector<ADB> kr = computeRelPerm(state);
|
||||
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
||||
const ADB mflux = computeMassFlux(phase, trans, kr, state);
|
||||
ADB source = accumSource(phase, kr, src);
|
||||
residual_[phase] =
|
||||
pvdt*(state.saturation[phase] - old_state.saturation[phase])
|
||||
+ ops_.div*mflux - source;
|
||||
}
|
||||
// Mass balance equation for polymer
|
||||
ADB polysrc = accumPolymerSource(kr, src);
|
||||
ADB mc = computeMc();
|
||||
ADB mflux = computeMassFlux(0, trans, kr, state);
|
||||
residual_[2] = pvdt * (state.saturation[0] * state.concentration - old_state.saturation[0] * old_state.concentration) + ops_.div * state.concentration * mc * mflux - polysrc;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::accumSource(const int phase,
|
||||
const std::vector<ADB>& kr,
|
||||
const std::vector<double>& src) const
|
||||
{
|
||||
//extract the source to out and in source.
|
||||
std::vector<double> outsrc;
|
||||
std::vector<double> insrc;
|
||||
std::vector<double>::const_iterator it;
|
||||
for (it = src.begin(); it != src.end(); ++it) {
|
||||
if (*it < 0) {
|
||||
outsrc.push_back(*it);
|
||||
insrc.push_back(0.0);
|
||||
} else if (*it > 0) {
|
||||
insrc.push_back(*it);
|
||||
outsrc.push_back(0.0);
|
||||
} else {
|
||||
outsrc.emplace_back(0);
|
||||
insrc.emplace_back(0);
|
||||
}
|
||||
}
|
||||
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
|
||||
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
|
||||
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
|
||||
|
||||
// compute the out-fracflow.
|
||||
ADB f_out = computeFracFlow(phase, kr);
|
||||
// compute the in-fracflow.
|
||||
V f_in;
|
||||
if (phase == 1) {
|
||||
f_in = V::Zero(grid_.number_of_cells);
|
||||
} else if (phase == 0) {
|
||||
f_in = V::Ones(grid_.number_of_cells);
|
||||
}
|
||||
return f_out * outSrc + f_in * inSrc;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const
|
||||
{
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB mob_phase = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
ADB mob_wat = kr[0] / V::Constant(kr[0].size(), 1, mus[0]);
|
||||
ADB mob_oil= kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB total_mob = mob_wat + mob_oil;
|
||||
ADB f = mob_phase / total_mob;
|
||||
|
||||
return f;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V
|
||||
FullyImplicitTwoPhaseSolver::solveJacobianSystem() const
|
||||
{
|
||||
const int np = fluid_.numPhases();
|
||||
if (np != 2) {
|
||||
OPM_THROW(std::logic_error, "Only two-phase ok in FullyImplicitTwoPhaseSolver.");
|
||||
}
|
||||
ADB mass_phase_res = vertcat(residual_[0], residual_[1]);
|
||||
ADB mass_res = collapseJacs(vertcat(mass_phase_res, residual_[2]));
|
||||
|
||||
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = mass_res.derivative()[0];
|
||||
V dx(V::Zero(mass_res.size()));
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
mass_res.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
OPM_THROW(std::runtime_error,
|
||||
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
|
||||
"Linear solver convergence failure.");
|
||||
}
|
||||
return dx;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void FullyImplicitTwoPhaseSolver::updateState(const V& dx,
|
||||
PolymerState& state) const
|
||||
{
|
||||
const int np = fluid_.numPhases();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const V null;
|
||||
assert(null.size() == 0);
|
||||
const V zero = V::Zero(nc);
|
||||
const V one = V::Constant(nc, 1.0);
|
||||
|
||||
// Extract parts of dx corresponding to each part.
|
||||
const V dp = subset(dx, Span(nc));
|
||||
int varstart = nc;
|
||||
const V dsw = subset(dx, Span(nc, 1, varstart));
|
||||
varstart += dsw.size();
|
||||
const V dc = subset(dx, Span(nc ,1 varstart));
|
||||
varstart += dc.size();
|
||||
|
||||
assert(varstart == dx.size());
|
||||
|
||||
// Pressure update.
|
||||
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc);
|
||||
const V p = p_old - dp;
|
||||
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
||||
|
||||
|
||||
// Saturation updates.
|
||||
const double dsmax = 0.3;
|
||||
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
||||
V so = one;
|
||||
const V sw_old = s_old.col(0);
|
||||
const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax);
|
||||
const V sw = (sw_old - dsw_limited).unaryExpr(Chop01());
|
||||
so -= sw;
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
state.saturation()[c*np] = sw[c];
|
||||
}
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
state.saturation()[c*np + 1] = so[c];
|
||||
}
|
||||
|
||||
// Concentration updates.
|
||||
const V c_old = Eigen::Map<const V>(&state.concentration()[0], nc);
|
||||
const V c = c_old - dc;
|
||||
std::copy(&c[0], &c[0] + nc, state.concentration().begin());
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwoPhaseSolver::computeRelPerm(const SolutionState& state) const
|
||||
{
|
||||
|
||||
const ADB sw = state.saturation[0];
|
||||
const ADB so = state.saturation[1];
|
||||
|
||||
return fluid_.relperm(sw, so, cells_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::computeMassFlux(const int phase ,
|
||||
const V& trans,
|
||||
const std::vector<ADB>& kr ,
|
||||
const SolutionState& state ) const
|
||||
{
|
||||
// const ADB tr_mult = transMult(state.pressure);
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB mob = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
|
||||
const ADB dp = ops_.ngrad * state.pressure;
|
||||
const ADB head = trans * dp;
|
||||
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
return upwind.select(mob) * head;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double
|
||||
FullyImplicitTwoPhaseSolver::residualNorm() const
|
||||
{
|
||||
double r = 0;
|
||||
for (std::vector<ADB>::const_iterator
|
||||
b = residual_.begin(),
|
||||
e = residual_.end();
|
||||
b != e; ++b)
|
||||
{
|
||||
r = std::max(r, (*b).value().matrix().norm());
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V
|
||||
FullyImplicitTwoPhaseSolver::transmissibility() const
|
||||
{
|
||||
const V::Index nc = grid_.number_of_cells;
|
||||
V htrans(grid_.cell_facepos[nc]);
|
||||
V trans(grid_.cell_facepos[nc]);
|
||||
UnstructuredGrid* ug = const_cast<UnstructuredGrid*>(& grid_);
|
||||
tpfa_htrans_compute(ug, fluid_.permeability(), htrans.data());
|
||||
tpfa_trans_compute (ug, htrans.data() , trans.data());
|
||||
|
||||
return trans;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}//namespace Opm
|
@ -0,0 +1,98 @@
|
||||
/**/
|
||||
|
||||
#ifndef OPM_FULLYIMPLICITTWOPHASEPOLYMERSOLVER_HEADER_INCLUDED
|
||||
#define OPM_FULLYIMPLICITTWOPHASEPOLYMERSOLVER_HEADER_INCLUDED
|
||||
|
||||
#include <opm/polymer/fullyimplicit/AutoDiffBlock.hpp>
|
||||
#include <opm/polymer//fullyimplicit/AutoDiffHelpers.hpp>
|
||||
#include <opm/polymer/fullyimplicit/IncompPropsAdInterface.hpp>
|
||||
#include <opm/polymer/PolymerProperties.hpp>
|
||||
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
|
||||
|
||||
struct UnstructuredGrid;
|
||||
namespace Opm {
|
||||
class LinearSolverInterface;
|
||||
class PolymerState;
|
||||
|
||||
|
||||
class FullyImplicitTwoPhaseSolver
|
||||
{
|
||||
public:
|
||||
FullyImplicitTwoPhaseSolver(const UnstructuredGrid& grid,
|
||||
const IncompPropsAdInterface& fluid,
|
||||
const PolymerProperties& polymer_props,
|
||||
const PolymerPropsAd& polymer_props_ad,
|
||||
const LinearSolverInterface& linsolver);
|
||||
|
||||
void step(const double dt,
|
||||
PolymerState& state,
|
||||
const std::vector<double>& src);
|
||||
private:
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
struct SolutionState {
|
||||
SolutionState(const int np);
|
||||
ADB pressure;
|
||||
std::vector<ADB> saturation;
|
||||
ADB concentration;
|
||||
// ADB cmax;
|
||||
};
|
||||
const UnstructuredGrid& grid_;
|
||||
const IncompPropsAdInterface& fluid_;
|
||||
const PolymerProperties& polymer_props_;
|
||||
const PolymerPropsAd& polymer_props_ad_;
|
||||
const LinearSolverInterface& linsolver_;
|
||||
const std::vector<int> cells_;
|
||||
HelperOps ops_;
|
||||
std::vector<ADB> residual_;
|
||||
|
||||
|
||||
SolutionState
|
||||
constantState(const PolymerState& x);
|
||||
SolutionState
|
||||
variableState(const PolymerState& x);
|
||||
void
|
||||
assemble(const V& pvdt,
|
||||
const SolutionState& old_state,
|
||||
const PolymerState& x,
|
||||
const std::vector<double>& src);
|
||||
V solveJacobianSystem() const;
|
||||
void updateState(const V& dx,
|
||||
PolymerState& x) const;
|
||||
std::vector<ADB>
|
||||
computeRelPerm(const SolutionState& state) const;
|
||||
V
|
||||
transmissibility() const;
|
||||
ADB
|
||||
computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const;
|
||||
ADB
|
||||
accumSource(const int phase,
|
||||
const std::vector<ADB>& kr,
|
||||
const std::vector<double>& src) const;
|
||||
ADB
|
||||
computeMassFlux(const int phase,
|
||||
const V& trans,
|
||||
const std::vector<ADB>& kr,
|
||||
const SolutionState& state) const;
|
||||
double
|
||||
residualNorm() const;
|
||||
|
||||
ADB
|
||||
rockPorosity(const ADB& p) const;
|
||||
ADB
|
||||
rockPermeability(const ADB& p) const;
|
||||
const double
|
||||
fluidDensity(const int phase) const;
|
||||
ADB
|
||||
transMult(const ADB& p) const;
|
||||
};
|
||||
} // namespace Opm
|
||||
#endif// OPM_FULLYIMPLICITTWOPHASESOLVER_HEADER_INCLUDED
|
@ -163,13 +163,28 @@ namespace Opm {
|
||||
|
||||
}
|
||||
*/
|
||||
PolymerPropsAd::PolymerPropsAd(const PolymerProperties& polymer_props)
|
||||
: polymer_props_ (polymer_props)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
PolymerPropsAd::~PolymerPropsAd()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
V PolymerPropsAd::effectiveInvWaterVisc(const V& c,
|
||||
const double* visc) const
|
||||
{
|
||||
const int nc = c.size();
|
||||
V inv_mu_w_eff(n);
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
double im;
|
||||
double im = 0;
|
||||
polymer_props_.effectiveInvVisc(c(i), visc, im);
|
||||
inv_mu_w_eff(i) = im;
|
||||
}
|
||||
@ -185,21 +200,21 @@ namespace Opm {
|
||||
ADB PolymerPropsAd::effectiveInvWaterVisc(const ADB& c,
|
||||
const double* visc)
|
||||
{
|
||||
const int n = c.size();
|
||||
const int nc = c.size();
|
||||
V inv_mu_w_eff(n);
|
||||
V dinv_mu_w_eff(n);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
double im, dim;
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
double im = 0, dim = 0;
|
||||
polymer_props_.effectiveInvViscWithDer(c.value()(i), visc, im, dim);
|
||||
inv_mu_w_eff(i) = im;
|
||||
dinv_mu_w_eff(i) = dim;
|
||||
}
|
||||
ADB::M dim_diag = spdiag(dinv_mu_w_eff);
|
||||
const int num_blocks = c.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dim_diag * c.derivative()[block];
|
||||
}
|
||||
ADB::M dim_diag = spdiag(dinv_mu_w_eff);
|
||||
const int num_blocks = c.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dim_diag * c.derivative()[block];
|
||||
}
|
||||
return ADB::function(inv_mu_w_eff, jacs);
|
||||
}
|
||||
|
||||
@ -209,8 +224,46 @@ namespace Opm {
|
||||
|
||||
V PolymerPropsAd::polymerWaterVelocityRatio(const V& c) const
|
||||
{
|
||||
const int nc
|
||||
const int nc = c.size();
|
||||
V mc(n);
|
||||
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
double m = 0;
|
||||
polymer_props_.computeMc(c(i), m);
|
||||
mc(i) = m;
|
||||
}
|
||||
|
||||
return mc;
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
ADB PolymerPropsAd::polymerWaterVelocityRatio(const ADB& c) const
|
||||
{
|
||||
|
||||
const int nc = c.size();
|
||||
V mc(n);
|
||||
V dmc(n);
|
||||
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
double m = 0;
|
||||
double dm = 0;
|
||||
polymer_props_.computeMcWithDer(c(i), m, dm);
|
||||
|
||||
mc(i) = m;
|
||||
dmc(i) = dm;
|
||||
}
|
||||
|
||||
ADB::M dmc_diag = spdiag(dmc);
|
||||
const int num_blocks = c.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmc_diag * c.derivative()[block];
|
||||
}
|
||||
|
||||
return ADB::function(mc, jacs);
|
||||
}
|
||||
|
||||
}// namespace Opm
|
||||
|
@ -65,10 +65,15 @@ namespace Opm {
|
||||
*/
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
PolymerPropsAd(const PolymerPropperties& polyprops);
|
||||
PolymerPropsAd(const PolymerPropperties& polymer_props);
|
||||
~PolymerPropsAd();
|
||||
V PolymerPropsAd::effectiveInvWaterVisc(const V& c,const double* visc) const;
|
||||
ADB PolymerPropsAd::effectiveInvWaterVisc(const ADB& c,const double* visc) const;
|
||||
|
||||
V PolymerPropsAd::polymerWaterVelocityRatio(const V& c) const;
|
||||
ADB PolymerPropsAd::polymerWaterVelocityRatio(const ADB& c) const;
|
||||
private:
|
||||
const PolymerProperties polyprops_;
|
||||
const PolymerProperties polymer_props_;
|
||||
};
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user