Refactoring/restructuring

This commit is contained in:
babrodtk 2015-08-11 10:24:55 +02:00
parent 5af128bcb6
commit 08dd631a8d
4 changed files with 692 additions and 539 deletions

358
opm/autodiff/VFPHelpers.hpp Normal file
View File

@ -0,0 +1,358 @@
/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AUTODIFF_VFPHELPERS_HPP_
#define OPM_AUTODIFF_VFPHELPERS_HPP_
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
/**
* This file contains a set of helper functions used by VFPProd / VFPInj.
*/
namespace Opm {
namespace detail {
typedef VFPProdProperties::ADB ADB;
/**
* Returns zero if input value is NaN
*/
inline double zeroIfNan(const double& value) {
return (std::isnan(value)) ? 0.0 : value;
}
/**
* Returns zero for every entry in the ADB which is NaN
*/
inline ADB zeroIfNan(const ADB& values) {
Selector<ADB::V::Scalar> not_nan_selector(values.value(), Selector<ADB::V::Scalar>::NotNaN);
const ADB::V z = ADB::V::Zero(values.size());
const ADB zero = ADB::constant(z, values.blockPattern());
ADB retval = not_nan_selector.select(values, zero);
return retval;
}
/**
* Computes the flo parameter according to the flo_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::FLO_TYPE& type) {
switch (type) {
case VFPProdTable::FLO_OIL:
//Oil = liquid phase
return liquid;
case VFPProdTable::FLO_LIQ:
//Liquid = aqua + liquid phases
return aqua + liquid;
case VFPProdTable::FLO_GAS:
//Gas = vapor phase
return vapour;
case VFPProdTable::FLO_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
}
}
/**
* Computes the wfr parameter according to the wfr_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::WFR_TYPE& type) {
switch(type) {
case VFPProdTable::WFR_WOR: {
//Water-oil ratio = water / oil
T wor = aqua / liquid;
return zeroIfNan(wor);
}
case VFPProdTable::WFR_WCT:
//Water cut = water / (water + oil)
return zeroIfNan(aqua / (aqua + liquid));
case VFPProdTable::WFR_WGR:
//Water-gas ratio = water / gas
return zeroIfNan(aqua / vapour);
case VFPProdTable::WFR_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
}
}
/**
* Computes the gfr parameter according to the gfr_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::GFR_TYPE& type) {
switch(type) {
case VFPProdTable::GFR_GOR:
// Gas-oil ratio = gas / oil
return zeroIfNan(vapour / liquid);
case VFPProdTable::GFR_GLR:
// Gas-liquid ratio = gas / (oil + water)
return zeroIfNan(vapour / (liquid + aqua));
case VFPProdTable::GFR_OGR:
// Oil-gas ratio = oil / gas
return zeroIfNan(liquid / vapour);
case VFPProdTable::GFR_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
}
}
/**
* Helper struct for linear interpolation
*/
struct InterpData {
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
double factor_; // Interpolation factor
};
/**
* Helper function to find indices etc. for linear interpolation
*/
inline InterpData findInterpData(const double& value, const std::vector<double>& values) {
InterpData retval;
//If we only have one value in our vector, return that
if (values.size() == 1) {
retval.ind_[0] = 0;
retval.ind_[1] = 0;
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
// Else search in the vector
else {
//First element greater than or equal to value
//Start with the second element, so that floor_iter does not go out of range
//Don't access out-of-range, therefore values.end()-1
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
//Find last element smaller than range
auto floor_iter = ceil_iter-1;
//Find the indices
retval.ind_[0] = floor_iter - values.begin();
retval.ind_[1] = ceil_iter - values.begin();
//Find interpolation ratio
double dist = (*ceil_iter - *floor_iter);
if (std::abs(dist) > 0.0) {
//Possible source for floating point error here if value and floor are large,
//but very close to each other
retval.inv_dist_ = 1.0 / dist;
retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
}
else {
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
}
return retval;
}
/**
* Helper function which interpolates data using the indices etc. given in the inputs.
*/
#ifdef __GNUC__
#pragma GCC push_options
#pragma GCC optimize ("unroll-loops")
#endif
inline VFPProdProperties::adb_like interpolate(
const VFPProdTable::array_type& array,
const InterpData& flo_i,
const InterpData& thp_i,
const InterpData& wfr_i,
const InterpData& gfr_i,
const InterpData& alq_i) {
//Values and derivatives in a 5D hypercube
VFPProdProperties::adb_like nn[2][2][2][2][2];
//Pick out nearest neighbors (nn) to our evaluation point
//This is not really required, but performance-wise it may pay off, since the 32-elements
//we copy to (nn) will fit better in cache than the full original table for the
//interpolation below.
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
for (int f=0; f<=1; ++f) {
//Shorthands for indexing
const int ti = thp_i.ind_[t];
const int wi = wfr_i.ind_[w];
const int gi = gfr_i.ind_[g];
const int ai = alq_i.ind_[a];
const int fi = flo_i.ind_[f];
//Copy element
nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
}
}
}
}
}
//Calculate derivatives
//Note that the derivative of the two end points of a line aligned with the
//"axis of the derivative" are equal
for (int i=0; i<=1; ++i) {
for (int j=0; j<=1; ++j) {
for (int k=0; k<=1; ++k) {
for (int l=0; l<=1; ++l) {
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
}
}
}
}
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
// Remove dimensions one by one
// Example: going from 3D to 2D to 1D, we start by interpolating along
// the z axis first, leaving a 2D problem. Then interpolating along the y
// axis, leaving a 1D, problem, etc.
t2 = flo_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
}
}
}
}
t2 = alq_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
}
}
}
t2 = gfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
}
}
t2 = wfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
}
t2 = thp_i.factor_;
t1 = (1.0-t2);
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
return nn[0][0][0][0][0];
}
#ifdef __GNUC__
#pragma GCC pop_options //unroll loops
#endif
} // namespace detail
} // namespace
#endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */

View File

@ -23,57 +23,13 @@
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp> #include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
#include <opm/core/props/BlackoilPhases.hpp> #include <opm/core/props/BlackoilPhases.hpp>
#include <opm/autodiff/VFPHelpers.hpp>
namespace Opm { namespace Opm {
VFPProdProperties::VFPProdProperties() {
}
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
m_tables[table->getTableNum()] = table;
}
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
init(tables);
}
void VFPProdProperties::init(const std::map<int, VFPProdTable>& prod_tables) {
//Populate production table pointers
for (const auto& table : prod_tables) {
m_tables[table.first] = &table.second;
}
}
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const Wells& wells,
const ADB& qs,
const ADB& thp,
const ADB& alq) const {
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
//Short-hands for water / oil / gas phases
//TODO enable support for two-phase.
assert(np == 3);
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
return bhp(table_id, w, o, g, thp, alq);
}
namespace detail { namespace detail {
/** /**
* Returns the type variable for FLO/GFR/WFR * Returns the type variable for FLO/GFR/WFR
@ -111,7 +67,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid, const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour, const VFPProdProperties::ADB& vapour,
VFPProdTable::FLO_TYPE type) { VFPProdTable::FLO_TYPE type) {
return VFPProdProperties::getFlo(aqua, liquid, vapour, type); return detail::getFlo(aqua, liquid, vapour, type);
} }
template <> template <>
@ -120,7 +76,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid, const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour, const VFPProdProperties::ADB& vapour,
VFPProdTable::WFR_TYPE type) { VFPProdTable::WFR_TYPE type) {
return VFPProdProperties::getWFR(aqua, liquid, vapour, type); return detail::getWFR(aqua, liquid, vapour, type);
} }
template <> template <>
@ -129,7 +85,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid, const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour, const VFPProdProperties::ADB& vapour,
VFPProdTable::GFR_TYPE type) { VFPProdTable::GFR_TYPE type) {
return VFPProdProperties::getGFR(aqua, liquid, vapour, type); return detail::getGFR(aqua, liquid, vapour, type);
} }
/** /**
@ -200,6 +156,12 @@ namespace detail {
return retval; return retval;
} }
/**
* Sets block_pattern to be the "union of x.blockPattern() and block_pattern".
*/
void extendBlockPattern(const VFPProdProperties::ADB& x, std::vector<int>& block_pattern) { void extendBlockPattern(const VFPProdProperties::ADB& x, std::vector<int>& block_pattern) {
std::vector<int> x_block_pattern = x.blockPattern(); std::vector<int> x_block_pattern = x.blockPattern();
@ -219,6 +181,9 @@ namespace detail {
} }
} }
/**
* Finds the common block pattern for all inputs
*/
std::vector<int> commonBlockPattern( std::vector<int> commonBlockPattern(
const VFPProdProperties::ADB& x1, const VFPProdProperties::ADB& x1,
const VFPProdProperties::ADB& x2, const VFPProdProperties::ADB& x2,
@ -236,8 +201,109 @@ namespace detail {
return block_pattern; return block_pattern;
} }
/**
* Helper function that finds x for a given value of y for a line
* *NOTE ORDER OF ARGUMENTS*
*/
double findX(const double& x0,
const double& x1,
const double& y0,
const double& y1,
const double& y) {
const double dx = x1 - x0;
const double dy = y1 - y0;
/**
* y = y0 + (dy / dx) * (x - x0)
* => x = x0 + (y - y0) * (dx / dy)
*
* If dy is zero, use x1 as the value.
*/
double x = 0.0;
if (dy != 0.0) {
x = x0 + (y-y0) * (dx/dy);
}
else {
x = x1;
}
return x;
}
} //Namespace } //Namespace
VFPProdProperties::VFPProdProperties() {
}
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
m_tables[table->getTableNum()] = table;
}
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
init(tables);
}
void VFPProdProperties::init(const std::map<int, VFPProdTable>& prod_tables) {
//Populate production table pointers
for (const auto& table : prod_tables) {
m_tables[table.first] = &table.second;
}
}
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const Wells& wells,
const ADB& qs,
const ADB& thp,
const ADB& alq) const {
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
//Short-hands for water / oil / gas phases
//TODO enable support for two-phase.
assert(np == 3);
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
return bhp(table_id, w, o, g, thp, alq);
}
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id, VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const ADB& aqua, const ADB& aqua,
const ADB& liquid, const ADB& liquid,
@ -281,13 +347,13 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const VFPProdTable* table = well_tables[i]; const VFPProdTable* table = well_tables[i];
if (table != NULL) { if (table != NULL) {
//First, find the values to interpolate between //First, find the values to interpolate between
auto flo_i = find_interp_data(flo.value()[i], table->getFloAxis()); auto flo_i = detail::findInterpData(flo.value()[i], table->getFloAxis());
auto thp_i = find_interp_data(thp.value()[i], table->getTHPAxis()); auto thp_i = detail::findInterpData(thp.value()[i], table->getTHPAxis());
auto wfr_i = find_interp_data(wfr.value()[i], table->getWFRAxis()); auto wfr_i = detail::findInterpData(wfr.value()[i], table->getWFRAxis());
auto gfr_i = find_interp_data(gfr.value()[i], table->getGFRAxis()); auto gfr_i = detail::findInterpData(gfr.value()[i], table->getGFRAxis());
auto alq_i = find_interp_data(alq.value()[i], table->getALQAxis()); auto alq_i = detail::findInterpData(alq.value()[i], table->getALQAxis());
adb_like bhp_val = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i); adb_like bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
value[i] = bhp_val.value; value[i] = bhp_val.value;
dthp[i] = bhp_val.dthp; dthp[i] = bhp_val.dthp;
@ -337,6 +403,9 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
return retval; return retval;
} }
VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id, VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
const double& aqua, const double& aqua,
const double& liquid, const double& liquid,
@ -346,23 +415,26 @@ VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
const VFPProdTable* table = getProdTable(table_id); const VFPProdTable* table = getProdTable(table_id);
//Find interpolation variables //Find interpolation variables
double flo = getFlo(aqua, liquid, vapour, table->getFloType()); double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
double wfr = getWFR(aqua, liquid, vapour, table->getWFRType()); double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
double gfr = getGFR(aqua, liquid, vapour, table->getGFRType()); double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
//First, find the values to interpolate between //First, find the values to interpolate between
auto flo_i = find_interp_data(flo, table->getFloAxis()); auto flo_i = detail::findInterpData(flo, table->getFloAxis());
auto thp_i = find_interp_data(thp, table->getTHPAxis()); auto thp_i = detail::findInterpData(thp, table->getTHPAxis());
auto wfr_i = find_interp_data(wfr, table->getWFRAxis()); auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
auto gfr_i = find_interp_data(gfr, table->getGFRAxis()); auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
auto alq_i = find_interp_data(alq, table->getALQAxis()); auto alq_i = detail::findInterpData(alq, table->getALQAxis());
//Then perform the interpolation itself //Then perform the interpolation itself
adb_like retval = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i); adb_like retval = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
return retval; return retval;
} }
double VFPProdProperties::thp(int table_id, double VFPProdProperties::thp(int table_id,
const double& aqua, const double& aqua,
const double& liquid, const double& liquid,
@ -375,9 +447,9 @@ double VFPProdProperties::thp(int table_id,
double thp = -1e100; double thp = -1e100;
//Find interpolation variables //Find interpolation variables
double flo = getFlo(aqua, liquid, vapour, table->getFloType()); double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
double wfr = getWFR(aqua, liquid, vapour, table->getWFRType()); double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
double gfr = getGFR(aqua, liquid, vapour, table->getGFRType()); double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
/** /**
* Get THP axis, assume that it is sorted * Get THP axis, assume that it is sorted
@ -391,14 +463,14 @@ double VFPProdProperties::thp(int table_id,
* by interpolating for every value of thp. This might be somewhat * by interpolating for every value of thp. This might be somewhat
* expensive, but let us assome that nthp is small * expensive, but let us assome that nthp is small
*/ */
auto flo_i = find_interp_data(flo, table->getFloAxis()); auto flo_i = detail::findInterpData(flo, table->getFloAxis());
auto wfr_i = find_interp_data(wfr, table->getWFRAxis()); auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
auto gfr_i = find_interp_data(gfr, table->getGFRAxis()); auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
auto alq_i = find_interp_data(alq, table->getALQAxis()); auto alq_i = detail::findInterpData(alq, table->getALQAxis());
std::vector<double> bhp_array(nthp); std::vector<double> bhp_array(nthp);
for (int i=0; i<nthp; ++i) { for (int i=0; i<nthp; ++i) {
auto thp_i = find_interp_data(thp_array[i], thp_array); auto thp_i = detail::findInterpData(thp_array[i], thp_array);
bhp_array[i] = interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value; bhp_array[i] = detail::interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
} }
/** /**
@ -415,7 +487,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[1]; const double& x1 = thp_array[1];
const double& y0 = bhp_array[0]; const double& y0 = bhp_array[0];
const double& y1 = bhp_array[1]; const double& y1 = bhp_array[1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
//Target bhp greater than all values in array, extrapolate //Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) { else if (bhp > bhp_array[nthp-1]) {
@ -424,7 +496,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[nthp-1]; const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2]; const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1]; const double& y1 = bhp_array[nthp-1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
//Target bhp within table ranges, interpolate //Target bhp within table ranges, interpolate
else { else {
@ -452,7 +524,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[i+1]; const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ]; const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1]; const double& y1 = bhp_array[i+1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
} }
//bhp_array not sorted, raw search. //bhp_array not sorted, raw search.
@ -476,7 +548,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[i+1]; const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ]; const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1]; const double& y1 = bhp_array[i+1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
else if (bhp <= bhp_array[0]) { else if (bhp <= bhp_array[0]) {
//TODO: LOG extrapolation //TODO: LOG extrapolation
@ -484,7 +556,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[1]; const double& x1 = thp_array[1];
const double& y0 = bhp_array[0]; const double& y0 = bhp_array[0];
const double& y1 = bhp_array[1]; const double& y1 = bhp_array[1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
//Target bhp greater than all values in array, extrapolate //Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) { else if (bhp > bhp_array[nthp-1]) {
@ -493,7 +565,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[nthp-1]; const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2]; const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1]; const double& y1 = bhp_array[nthp-1];
thp = find_x(x0, x1, y0, y1, bhp); thp = detail::findX(x0, x1, y0, y1, bhp);
} }
else { else {
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array"); OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
@ -505,6 +577,9 @@ double VFPProdProperties::thp(int table_id,
const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const { const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
auto entry = m_tables.find(table_id); auto entry = m_tables.find(table_id);
if (entry == m_tables.end()) { if (entry == m_tables.end()) {
@ -515,193 +590,10 @@ const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
} }
} }
VFPProdProperties::InterpData VFPProdProperties::find_interp_data(const double& value, const std::vector<double>& values) {
InterpData retval;
//If we only have one value in our vector, return that
if (values.size() == 1) {
retval.ind_[0] = 0;
retval.ind_[1] = 0;
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
// Else search in the vector
else {
//First element greater than or equal to value
//Start with the second element, so that floor_iter does not go out of range
//Don't access out-of-range, therefore values.end()-1
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
//Find last element smaller than range
auto floor_iter = ceil_iter-1;
//Find the indices
retval.ind_[0] = floor_iter - values.begin();
retval.ind_[1] = ceil_iter - values.begin();
//Find interpolation ratio
double dist = (*ceil_iter - *floor_iter);
if (std::abs(dist) > 0.0) {
//Possible source for floating point error here if value and floor are large,
//but very close to each other
retval.inv_dist_ = 1.0 / dist;
retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
}
else {
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
}
return retval;
}
#ifdef __GNUC__
#pragma GCC push_options
#pragma GCC optimize ("unroll-loops")
#endif
VFPProdProperties::adb_like VFPProdProperties::interpolate(
const VFPProdTable::array_type& array,
const InterpData& flo_i,
const InterpData& thp_i,
const InterpData& wfr_i,
const InterpData& gfr_i,
const InterpData& alq_i) {
//Values and derivatives in a 5D hypercube
adb_like nn[2][2][2][2][2];
//Pick out nearest neighbors (nn) to our evaluation point
//This is not really required, but performance-wise it may pay off, since the 32-elements
//we copy to (nn) will fit better in cache than the full original table for the
//interpolation below.
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
for (int f=0; f<=1; ++f) {
//Shorthands for indexing
const int ti = thp_i.ind_[t];
const int wi = wfr_i.ind_[w];
const int gi = gfr_i.ind_[g];
const int ai = alq_i.ind_[a];
const int fi = flo_i.ind_[f];
//Copy element
nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
}
}
}
}
}
//Calculate derivatives
//Note that the derivative of the two end points of a line aligned with the
//"axis of the derivative" are equal
for (int i=0; i<=1; ++i) {
for (int j=0; j<=1; ++j) {
for (int k=0; k<=1; ++k) {
for (int l=0; l<=1; ++l) {
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
}
}
}
}
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
// Remove dimensions one by one
// Example: going from 3D to 2D to 1D, we start by interpolating along
// the z axis first, leaving a 2D problem. Then interpolating along the y
// axis, leaving a 1D, problem, etc.
t2 = flo_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
}
}
}
}
t2 = alq_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
}
}
}
t2 = gfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
}
}
t2 = wfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
}
t2 = thp_i.factor_;
t1 = (1.0-t2);
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
return nn[0][0][0][0][0];
}
#ifdef __GNUC__
#pragma GCC pop_options //unroll loops
#endif
double VFPProdProperties::find_x(const double& x0,
const double& x1,
const double& y0,
const double& y1,
const double& y) {
const double dx = x1 - x0;
const double dy = y1 - y0;
/**
* y = y0 + (dy / dx) * (x - x0)
* => x = x0 + (y - y0) * (dx / dy)
*
* If dy is zero, use x1 as the value.
*/
double x = 0.0;
if (dy != 0.0) {
x = x0 + (y-y0) * (dx/dy);
}
else {
x = x1;
}
return x;
}

View File

@ -152,117 +152,11 @@ public:
const double& bhp, const double& bhp,
const double& alq) const; const double& alq) const;
/**
* Computes the flo parameter according to the flo_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::FLO_TYPE& type) {
switch (type) {
case VFPProdTable::FLO_OIL:
//Oil = liquid phase
return liquid;
case VFPProdTable::FLO_LIQ:
//Liquid = aqua + liquid phases
return aqua + liquid;
case VFPProdTable::FLO_GAS:
//Gas = vapor phase
return vapour;
case VFPProdTable::FLO_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
}
}
/**
* Computes the wfr parameter according to the wfr_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::WFR_TYPE& type) {
switch(type) {
case VFPProdTable::WFR_WOR: {
//Water-oil ratio = water / oil
T wor = aqua / liquid;
return zeroIfNan(wor);
}
case VFPProdTable::WFR_WCT:
//Water cut = water / (water + oil)
return zeroIfNan(aqua / (aqua + liquid));
case VFPProdTable::WFR_WGR:
//Water-gas ratio = water / gas
return zeroIfNan(aqua / vapour);
case VFPProdTable::WFR_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
}
}
/**
* Computes the gfr parameter according to the gfr_type_
* @return Production rate of oil, gas or liquid.
*/
template <typename T>
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
const VFPProdTable::GFR_TYPE& type) {
switch(type) {
case VFPProdTable::GFR_GOR:
// Gas-oil ratio = gas / oil
return zeroIfNan(vapour / liquid);
case VFPProdTable::GFR_GLR:
// Gas-liquid ratio = gas / (oil + water)
return zeroIfNan(vapour / (liquid + aqua));
case VFPProdTable::GFR_OGR:
// Oil-gas ratio = oil / gas
return zeroIfNan(liquid / vapour);
case VFPProdTable::GFR_INVALID: //Intentional fall-through
default:
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
}
}
private: private:
// Map which connects the table number with the table itself // Map which connects the table number with the table itself
std::map<int, const VFPProdTable*> m_tables; std::map<int, const VFPProdTable*> m_tables;
/**
* Helper struct for linear interpolation
*/
struct InterpData {
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
double factor_; // Interpolation factor
};
/**
* Helper function to find indices etc. for linear interpolation
*/
static InterpData find_interp_data(const double& value, const std::vector<double>& values);
/**
* Helper function which interpolates data using the indices etc. given in the inputs.
*/
static adb_like interpolate(const VFPProdTable::array_type& array,
const InterpData& flo_i,
const InterpData& thp_i,
const InterpData& wfr_i,
const InterpData& gfr_i,
const InterpData& alq_i);
/**
* Helper function that finds x for a given value of y for a line
* *NOTE ORDER OF ARGUMENTS*
*/
static double find_x(const double& x0,
const double& x1,
const double& y0,
const double& y1,
const double& y);
/** /**
@ -275,19 +169,6 @@ private:
*/ */
const VFPProdTable* getProdTable(int table_id) const; const VFPProdTable* getProdTable(int table_id) const;
static inline double zeroIfNan(const double& value) {
return (std::isnan(value)) ? 0.0 : value;
}
static inline ADB zeroIfNan(const ADB& values) {
Selector<ADB::V::Scalar> not_nan_selector(values.value(), Selector<ADB::V::Scalar>::NotNaN);
const ADB::V z = ADB::V::Zero(values.size());
const ADB zero = ADB::constant(z, values.blockPattern());
ADB retval = not_nan_selector.select(values, zero);
return retval;
}
}; };

View File

@ -42,11 +42,182 @@
#include <opm/autodiff/VFPProperties.hpp> #include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp> #include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/VFPHelpers.hpp>
const double max_d_tol = 1.0e-10; const double max_d_tol = 1.0e-10;
const double sad_tol = 1.0e-8; const double sad_tol = 1.0e-8;
struct ConversionFixture {
typedef Opm::VFPProdProperties::ADB ADB;
ConversionFixture() :
num_wells(5),
aqua(ADB::null()),
liquid(ADB::null()),
vapour(ADB::null())
{
ADB::V aqua_v(num_wells);
ADB::V liquid_v(num_wells);
ADB::V vapour_v(num_wells);
for (int i=0; i<num_wells; ++i) {
aqua_v[i] = 300+num_wells*15;
liquid_v[i] = 500+num_wells*15;
vapour_v[i] = 700+num_wells*15;
}
aqua = ADB::constant(aqua_v);
liquid = ADB::constant(liquid_v);
vapour = ADB::constant(vapour_v);
}
~ConversionFixture() {
}
int num_wells;
ADB aqua;
ADB liquid;
ADB vapour;
};
BOOST_FIXTURE_TEST_SUITE( ConversionTests, ConversionFixture )
BOOST_AUTO_TEST_CASE(getFlo)
{
//Compute reference solutions
std::vector<double> ref_flo_oil(num_wells);
std::vector<double> ref_flo_liq(num_wells);
std::vector<double> ref_flo_gas(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_flo_oil[i] = liquid.value()[i];
ref_flo_liq[i] = aqua.value()[i] + liquid.value()[i];
ref_flo_gas[i] = vapour.value()[i];
}
{
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_OIL);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_oil.begin(), ref_flo_oil.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_LIQ);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_liq.begin(), ref_flo_liq.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_GAS);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_gas.begin(), ref_flo_gas.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_CASE(getWFR)
{
//Compute reference solutions
std::vector<double> ref_wfr_wor(num_wells);
std::vector<double> ref_wfr_wct(num_wells);
std::vector<double> ref_wfr_wgr(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_wfr_wor[i] = aqua.value()[i] / liquid.value()[i];
ref_wfr_wct[i] = aqua.value()[i] / (aqua.value()[i] + liquid.value()[i]);
ref_wfr_wgr[i] = aqua.value()[i] / vapour.value()[i];
}
{
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WOR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wor.begin(), ref_wfr_wor.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WCT);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wct.begin(), ref_wfr_wct.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WGR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wgr.begin(), ref_wfr_wgr.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_CASE(getGFR)
{
//Compute reference solutions
std::vector<double> ref_gfr_gor(num_wells);
std::vector<double> ref_gfr_glr(num_wells);
std::vector<double> ref_gfr_ogr(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_gfr_gor[i] = vapour.value()[i] / liquid.value()[i];
ref_gfr_glr[i] = vapour.value()[i] / (liquid.value()[i] + aqua.value()[i]);
ref_gfr_ogr[i] = liquid.value()[i] / vapour.value()[i];
}
{
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GOR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_gor.begin(), ref_gfr_gor.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GLR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_glr.begin(), ref_gfr_glr.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_OGR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_ogr.begin(), ref_gfr_ogr.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_SUITE_END() // unit tests
@ -353,9 +524,9 @@ BOOST_AUTO_TEST_CASE(InterpolatePlane)
const double liquid = m / static_cast<double>(n); const double liquid = m / static_cast<double>(n);
//Find values that should be in table //Find values that should be in table
double flo = properties->getFlo(aqua, liquid, vapour, table.getFloType()); double flo = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
double wfr = properties->getWFR(aqua, liquid, vapour, table.getWFRType()); double wfr = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
double gfr = properties->getGFR(aqua, liquid, vapour, table.getGFRType()); double gfr = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
//Calculate reference //Calculate reference
adb_like reference; adb_like reference;
@ -437,9 +608,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlane)
const double liquid = m / static_cast<double>(n); const double liquid = m / static_cast<double>(n);
//Find values that should be in table //Find values that should be in table
double v = properties->getFlo(aqua, liquid, vapour, table.getFloType()); double v = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
double y = properties->getWFR(aqua, liquid, vapour, table.getWFRType()); double y = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
double z = properties->getGFR(aqua, liquid, vapour, table.getGFRType()); double z = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
double reference = x + 2*y + 3*z+ 4*u + 5*v; double reference = x + 2*y + 3*z+ 4*u + 5*v;
reference_sum += reference; reference_sum += reference;
@ -524,9 +695,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlaneADB)
double reference = 0.0; double reference = 0.0;
for (int w=0; w < num_wells; ++w) { for (int w=0; w < num_wells; ++w) {
//Find values that should be in table //Find values that should be in table
double v = properties->getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType()); double v = Opm::detail::getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType());
double y = properties->getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType()); double y = Opm::detail::getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType());
double z = properties->getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType()); double z = Opm::detail::getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType());
reference = x*(w+1) + 2*y + 3*z + 4*u*(w+1) + 5*v; reference = x*(w+1) + 2*y + 3*z + 4*u*(w+1) + 5*v;
value = bhp_val[w]; value = bhp_val[w];
@ -668,155 +839,6 @@ BOOST_AUTO_TEST_SUITE_END() // Trivial tests
struct ConversionFixture {
typedef Opm::VFPProdProperties::ADB ADB;
ConversionFixture() :
num_wells(5),
aqua(ADB::null()),
liquid(ADB::null()),
vapour(ADB::null())
{
ADB::V aqua_v(num_wells);
ADB::V liquid_v(num_wells);
ADB::V vapour_v(num_wells);
for (int i=0; i<num_wells; ++i) {
aqua_v[i] = 300+num_wells*15;
liquid_v[i] = 500+num_wells*15;
vapour_v[i] = 700+num_wells*15;
}
aqua = ADB::constant(aqua_v);
liquid = ADB::constant(liquid_v);
vapour = ADB::constant(vapour_v);
}
~ConversionFixture() {
}
int num_wells;
ADB aqua;
ADB liquid;
ADB vapour;
};
BOOST_FIXTURE_TEST_SUITE( ConversionTests, ConversionFixture )
BOOST_AUTO_TEST_CASE(getFlo)
{
//Compute reference solutions
std::vector<double> ref_flo_oil(num_wells);
std::vector<double> ref_flo_liq(num_wells);
std::vector<double> ref_flo_gas(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_flo_oil[i] = liquid.value()[i];
ref_flo_liq[i] = aqua.value()[i] + liquid.value()[i];
ref_flo_gas[i] = vapour.value()[i];
}
{
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_OIL);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_oil.begin(), ref_flo_oil.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_LIQ);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_liq.begin(), ref_flo_liq.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_GAS);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_gas.begin(), ref_flo_gas.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_CASE(getWFR)
{
//Compute reference solutions
std::vector<double> ref_wfr_wor(num_wells);
std::vector<double> ref_wfr_wct(num_wells);
std::vector<double> ref_wfr_wgr(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_wfr_wor[i] = aqua.value()[i] / liquid.value()[i];
ref_wfr_wct[i] = aqua.value()[i] / (aqua.value()[i] + liquid.value()[i]);
ref_wfr_wgr[i] = aqua.value()[i] / vapour.value()[i];
}
{
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WOR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wor.begin(), ref_wfr_wor.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WCT);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wct.begin(), ref_wfr_wct.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WGR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wgr.begin(), ref_wfr_wgr.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_CASE(getGFR)
{
//Compute reference solutions
std::vector<double> ref_gfr_gor(num_wells);
std::vector<double> ref_gfr_glr(num_wells);
std::vector<double> ref_gfr_ogr(num_wells);
for (int i=0; i<num_wells; ++i) {
ref_gfr_gor[i] = vapour.value()[i] / liquid.value()[i];
ref_gfr_glr[i] = vapour.value()[i] / (liquid.value()[i] + aqua.value()[i]);
ref_gfr_ogr[i] = liquid.value()[i] / vapour.value()[i];
}
{
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GOR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_gor.begin(), ref_gfr_gor.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GLR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_glr.begin(), ref_gfr_glr.end(), computed, computed+num_wells);
}
{
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_OGR);
const double* computed = &flo.value()[0];
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_ogr.begin(), ref_gfr_ogr.end(), computed, computed+num_wells);
}
}
BOOST_AUTO_TEST_SUITE_END() // unit tests