mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Refactoring/restructuring
This commit is contained in:
parent
5af128bcb6
commit
08dd631a8d
358
opm/autodiff/VFPHelpers.hpp
Normal file
358
opm/autodiff/VFPHelpers.hpp
Normal file
@ -0,0 +1,358 @@
|
||||
/*
|
||||
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_AUTODIFF_VFPHELPERS_HPP_
|
||||
#define OPM_AUTODIFF_VFPHELPERS_HPP_
|
||||
|
||||
|
||||
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
|
||||
|
||||
|
||||
/**
|
||||
* This file contains a set of helper functions used by VFPProd / VFPInj.
|
||||
*/
|
||||
namespace Opm {
|
||||
namespace detail {
|
||||
|
||||
|
||||
typedef VFPProdProperties::ADB ADB;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns zero if input value is NaN
|
||||
*/
|
||||
inline double zeroIfNan(const double& value) {
|
||||
return (std::isnan(value)) ? 0.0 : value;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns zero for every entry in the ADB which is NaN
|
||||
*/
|
||||
inline ADB zeroIfNan(const ADB& values) {
|
||||
Selector<ADB::V::Scalar> not_nan_selector(values.value(), Selector<ADB::V::Scalar>::NotNaN);
|
||||
|
||||
const ADB::V z = ADB::V::Zero(values.size());
|
||||
const ADB zero = ADB::constant(z, values.blockPattern());
|
||||
|
||||
ADB retval = not_nan_selector.select(values, zero);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flo parameter according to the flo_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::FLO_TYPE& type) {
|
||||
switch (type) {
|
||||
case VFPProdTable::FLO_OIL:
|
||||
//Oil = liquid phase
|
||||
return liquid;
|
||||
case VFPProdTable::FLO_LIQ:
|
||||
//Liquid = aqua + liquid phases
|
||||
return aqua + liquid;
|
||||
case VFPProdTable::FLO_GAS:
|
||||
//Gas = vapor phase
|
||||
return vapour;
|
||||
case VFPProdTable::FLO_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the wfr parameter according to the wfr_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::WFR_TYPE& type) {
|
||||
switch(type) {
|
||||
case VFPProdTable::WFR_WOR: {
|
||||
//Water-oil ratio = water / oil
|
||||
T wor = aqua / liquid;
|
||||
return zeroIfNan(wor);
|
||||
}
|
||||
case VFPProdTable::WFR_WCT:
|
||||
//Water cut = water / (water + oil)
|
||||
return zeroIfNan(aqua / (aqua + liquid));
|
||||
case VFPProdTable::WFR_WGR:
|
||||
//Water-gas ratio = water / gas
|
||||
return zeroIfNan(aqua / vapour);
|
||||
case VFPProdTable::WFR_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the gfr parameter according to the gfr_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::GFR_TYPE& type) {
|
||||
switch(type) {
|
||||
case VFPProdTable::GFR_GOR:
|
||||
// Gas-oil ratio = gas / oil
|
||||
return zeroIfNan(vapour / liquid);
|
||||
case VFPProdTable::GFR_GLR:
|
||||
// Gas-liquid ratio = gas / (oil + water)
|
||||
return zeroIfNan(vapour / (liquid + aqua));
|
||||
case VFPProdTable::GFR_OGR:
|
||||
// Oil-gas ratio = oil / gas
|
||||
return zeroIfNan(liquid / vapour);
|
||||
case VFPProdTable::GFR_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Helper struct for linear interpolation
|
||||
*/
|
||||
struct InterpData {
|
||||
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
|
||||
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
|
||||
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
|
||||
double factor_; // Interpolation factor
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Helper function to find indices etc. for linear interpolation
|
||||
*/
|
||||
inline InterpData findInterpData(const double& value, const std::vector<double>& values) {
|
||||
InterpData retval;
|
||||
|
||||
//If we only have one value in our vector, return that
|
||||
if (values.size() == 1) {
|
||||
retval.ind_[0] = 0;
|
||||
retval.ind_[1] = 0;
|
||||
retval.inv_dist_ = 0.0;
|
||||
retval.factor_ = 0.0;
|
||||
}
|
||||
// Else search in the vector
|
||||
else {
|
||||
//First element greater than or equal to value
|
||||
//Start with the second element, so that floor_iter does not go out of range
|
||||
//Don't access out-of-range, therefore values.end()-1
|
||||
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
||||
|
||||
//Find last element smaller than range
|
||||
auto floor_iter = ceil_iter-1;
|
||||
|
||||
//Find the indices
|
||||
retval.ind_[0] = floor_iter - values.begin();
|
||||
retval.ind_[1] = ceil_iter - values.begin();
|
||||
|
||||
//Find interpolation ratio
|
||||
double dist = (*ceil_iter - *floor_iter);
|
||||
if (std::abs(dist) > 0.0) {
|
||||
//Possible source for floating point error here if value and floor are large,
|
||||
//but very close to each other
|
||||
retval.inv_dist_ = 1.0 / dist;
|
||||
retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
|
||||
}
|
||||
else {
|
||||
retval.inv_dist_ = 0.0;
|
||||
retval.factor_ = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Helper function which interpolates data using the indices etc. given in the inputs.
|
||||
*/
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("unroll-loops")
|
||||
#endif
|
||||
inline VFPProdProperties::adb_like interpolate(
|
||||
const VFPProdTable::array_type& array,
|
||||
const InterpData& flo_i,
|
||||
const InterpData& thp_i,
|
||||
const InterpData& wfr_i,
|
||||
const InterpData& gfr_i,
|
||||
const InterpData& alq_i) {
|
||||
|
||||
//Values and derivatives in a 5D hypercube
|
||||
VFPProdProperties::adb_like nn[2][2][2][2][2];
|
||||
|
||||
|
||||
//Pick out nearest neighbors (nn) to our evaluation point
|
||||
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
||||
//we copy to (nn) will fit better in cache than the full original table for the
|
||||
//interpolation below.
|
||||
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
for (int a=0; a<=1; ++a) {
|
||||
for (int f=0; f<=1; ++f) {
|
||||
//Shorthands for indexing
|
||||
const int ti = thp_i.ind_[t];
|
||||
const int wi = wfr_i.ind_[w];
|
||||
const int gi = gfr_i.ind_[g];
|
||||
const int ai = alq_i.ind_[a];
|
||||
const int fi = flo_i.ind_[f];
|
||||
|
||||
//Copy element
|
||||
nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Calculate derivatives
|
||||
//Note that the derivative of the two end points of a line aligned with the
|
||||
//"axis of the derivative" are equal
|
||||
for (int i=0; i<=1; ++i) {
|
||||
for (int j=0; j<=1; ++j) {
|
||||
for (int k=0; k<=1; ++k) {
|
||||
for (int l=0; l<=1; ++l) {
|
||||
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
|
||||
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
|
||||
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
|
||||
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
|
||||
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
|
||||
|
||||
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
|
||||
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
|
||||
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
|
||||
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
|
||||
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
||||
|
||||
// Remove dimensions one by one
|
||||
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
||||
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
||||
// axis, leaving a 1D, problem, etc.
|
||||
t2 = flo_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
for (int a=0; a<=1; ++a) {
|
||||
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t2 = alq_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t2 = gfr_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
|
||||
}
|
||||
}
|
||||
|
||||
t2 = wfr_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
|
||||
}
|
||||
|
||||
t2 = thp_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
|
||||
|
||||
return nn[0][0][0][0][0];
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC pop_options //unroll loops
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
|
||||
|
||||
#endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */
|
@ -23,57 +23,13 @@
|
||||
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
|
||||
#include <opm/autodiff/VFPHelpers.hpp>
|
||||
|
||||
|
||||
|
||||
namespace Opm {
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::VFPProdProperties() {
|
||||
|
||||
}
|
||||
|
||||
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
|
||||
m_tables[table->getTableNum()] = table;
|
||||
}
|
||||
|
||||
|
||||
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
|
||||
init(tables);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void VFPProdProperties::init(const std::map<int, VFPProdTable>& prod_tables) {
|
||||
//Populate production table pointers
|
||||
for (const auto& table : prod_tables) {
|
||||
m_tables[table.first] = &table.second;
|
||||
}
|
||||
}
|
||||
|
||||
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
const Wells& wells,
|
||||
const ADB& qs,
|
||||
const ADB& thp,
|
||||
const ADB& alq) const {
|
||||
const int np = wells.number_of_phases;
|
||||
const int nw = wells.number_of_wells;
|
||||
|
||||
//Short-hands for water / oil / gas phases
|
||||
//TODO enable support for two-phase.
|
||||
assert(np == 3);
|
||||
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
||||
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
||||
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
||||
|
||||
return bhp(table_id, w, o, g, thp, alq);
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
/**
|
||||
* Returns the type variable for FLO/GFR/WFR
|
||||
@ -111,7 +67,7 @@ namespace detail {
|
||||
const VFPProdProperties::ADB& liquid,
|
||||
const VFPProdProperties::ADB& vapour,
|
||||
VFPProdTable::FLO_TYPE type) {
|
||||
return VFPProdProperties::getFlo(aqua, liquid, vapour, type);
|
||||
return detail::getFlo(aqua, liquid, vapour, type);
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -120,7 +76,7 @@ namespace detail {
|
||||
const VFPProdProperties::ADB& liquid,
|
||||
const VFPProdProperties::ADB& vapour,
|
||||
VFPProdTable::WFR_TYPE type) {
|
||||
return VFPProdProperties::getWFR(aqua, liquid, vapour, type);
|
||||
return detail::getWFR(aqua, liquid, vapour, type);
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -129,7 +85,7 @@ namespace detail {
|
||||
const VFPProdProperties::ADB& liquid,
|
||||
const VFPProdProperties::ADB& vapour,
|
||||
VFPProdTable::GFR_TYPE type) {
|
||||
return VFPProdProperties::getGFR(aqua, liquid, vapour, type);
|
||||
return detail::getGFR(aqua, liquid, vapour, type);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -200,6 +156,12 @@ namespace detail {
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Sets block_pattern to be the "union of x.blockPattern() and block_pattern".
|
||||
*/
|
||||
void extendBlockPattern(const VFPProdProperties::ADB& x, std::vector<int>& block_pattern) {
|
||||
std::vector<int> x_block_pattern = x.blockPattern();
|
||||
|
||||
@ -219,6 +181,9 @@ namespace detail {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the common block pattern for all inputs
|
||||
*/
|
||||
std::vector<int> commonBlockPattern(
|
||||
const VFPProdProperties::ADB& x1,
|
||||
const VFPProdProperties::ADB& x2,
|
||||
@ -236,8 +201,109 @@ namespace detail {
|
||||
return block_pattern;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function that finds x for a given value of y for a line
|
||||
* *NOTE ORDER OF ARGUMENTS*
|
||||
*/
|
||||
double findX(const double& x0,
|
||||
const double& x1,
|
||||
const double& y0,
|
||||
const double& y1,
|
||||
const double& y) {
|
||||
const double dx = x1 - x0;
|
||||
const double dy = y1 - y0;
|
||||
|
||||
/**
|
||||
* y = y0 + (dy / dx) * (x - x0)
|
||||
* => x = x0 + (y - y0) * (dx / dy)
|
||||
*
|
||||
* If dy is zero, use x1 as the value.
|
||||
*/
|
||||
|
||||
double x = 0.0;
|
||||
|
||||
if (dy != 0.0) {
|
||||
x = x0 + (y-y0) * (dx/dy);
|
||||
}
|
||||
else {
|
||||
x = x1;
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
} //Namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::VFPProdProperties() {
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
|
||||
m_tables[table->getTableNum()] = table;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
|
||||
init(tables);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void VFPProdProperties::init(const std::map<int, VFPProdTable>& prod_tables) {
|
||||
//Populate production table pointers
|
||||
for (const auto& table : prod_tables) {
|
||||
m_tables[table.first] = &table.second;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
const Wells& wells,
|
||||
const ADB& qs,
|
||||
const ADB& thp,
|
||||
const ADB& alq) const {
|
||||
const int np = wells.number_of_phases;
|
||||
const int nw = wells.number_of_wells;
|
||||
|
||||
//Short-hands for water / oil / gas phases
|
||||
//TODO enable support for two-phase.
|
||||
assert(np == 3);
|
||||
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
|
||||
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
|
||||
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
|
||||
|
||||
return bhp(table_id, w, o, g, thp, alq);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
const ADB& aqua,
|
||||
const ADB& liquid,
|
||||
@ -281,13 +347,13 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
const VFPProdTable* table = well_tables[i];
|
||||
if (table != NULL) {
|
||||
//First, find the values to interpolate between
|
||||
auto flo_i = find_interp_data(flo.value()[i], table->getFloAxis());
|
||||
auto thp_i = find_interp_data(thp.value()[i], table->getTHPAxis());
|
||||
auto wfr_i = find_interp_data(wfr.value()[i], table->getWFRAxis());
|
||||
auto gfr_i = find_interp_data(gfr.value()[i], table->getGFRAxis());
|
||||
auto alq_i = find_interp_data(alq.value()[i], table->getALQAxis());
|
||||
auto flo_i = detail::findInterpData(flo.value()[i], table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData(thp.value()[i], table->getTHPAxis());
|
||||
auto wfr_i = detail::findInterpData(wfr.value()[i], table->getWFRAxis());
|
||||
auto gfr_i = detail::findInterpData(gfr.value()[i], table->getGFRAxis());
|
||||
auto alq_i = detail::findInterpData(alq.value()[i], table->getALQAxis());
|
||||
|
||||
adb_like bhp_val = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
adb_like bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
|
||||
value[i] = bhp_val.value;
|
||||
dthp[i] = bhp_val.dthp;
|
||||
@ -337,6 +403,9 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
|
||||
const double& aqua,
|
||||
const double& liquid,
|
||||
@ -346,23 +415,26 @@ VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
|
||||
const VFPProdTable* table = getProdTable(table_id);
|
||||
|
||||
//Find interpolation variables
|
||||
double flo = getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
double wfr = getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
double gfr = getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
|
||||
//First, find the values to interpolate between
|
||||
auto flo_i = find_interp_data(flo, table->getFloAxis());
|
||||
auto thp_i = find_interp_data(thp, table->getTHPAxis());
|
||||
auto wfr_i = find_interp_data(wfr, table->getWFRAxis());
|
||||
auto gfr_i = find_interp_data(gfr, table->getGFRAxis());
|
||||
auto alq_i = find_interp_data(alq, table->getALQAxis());
|
||||
auto flo_i = detail::findInterpData(flo, table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData(thp, table->getTHPAxis());
|
||||
auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
|
||||
auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
|
||||
auto alq_i = detail::findInterpData(alq, table->getALQAxis());
|
||||
|
||||
//Then perform the interpolation itself
|
||||
adb_like retval = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
adb_like retval = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double VFPProdProperties::thp(int table_id,
|
||||
const double& aqua,
|
||||
const double& liquid,
|
||||
@ -375,9 +447,9 @@ double VFPProdProperties::thp(int table_id,
|
||||
double thp = -1e100;
|
||||
|
||||
//Find interpolation variables
|
||||
double flo = getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
double wfr = getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
double gfr = getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
|
||||
/**
|
||||
* Get THP axis, assume that it is sorted
|
||||
@ -391,14 +463,14 @@ double VFPProdProperties::thp(int table_id,
|
||||
* by interpolating for every value of thp. This might be somewhat
|
||||
* expensive, but let us assome that nthp is small
|
||||
*/
|
||||
auto flo_i = find_interp_data(flo, table->getFloAxis());
|
||||
auto wfr_i = find_interp_data(wfr, table->getWFRAxis());
|
||||
auto gfr_i = find_interp_data(gfr, table->getGFRAxis());
|
||||
auto alq_i = find_interp_data(alq, table->getALQAxis());
|
||||
auto flo_i = detail::findInterpData(flo, table->getFloAxis());
|
||||
auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
|
||||
auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
|
||||
auto alq_i = detail::findInterpData(alq, table->getALQAxis());
|
||||
std::vector<double> bhp_array(nthp);
|
||||
for (int i=0; i<nthp; ++i) {
|
||||
auto thp_i = find_interp_data(thp_array[i], thp_array);
|
||||
bhp_array[i] = interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
|
||||
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
|
||||
bhp_array[i] = detail::interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -415,7 +487,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[1];
|
||||
const double& y0 = bhp_array[0];
|
||||
const double& y1 = bhp_array[1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
//Target bhp greater than all values in array, extrapolate
|
||||
else if (bhp > bhp_array[nthp-1]) {
|
||||
@ -424,7 +496,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[nthp-1];
|
||||
const double& y0 = bhp_array[nthp-2];
|
||||
const double& y1 = bhp_array[nthp-1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
//Target bhp within table ranges, interpolate
|
||||
else {
|
||||
@ -452,7 +524,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[i+1];
|
||||
const double& y0 = bhp_array[i ];
|
||||
const double& y1 = bhp_array[i+1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
}
|
||||
//bhp_array not sorted, raw search.
|
||||
@ -476,7 +548,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[i+1];
|
||||
const double& y0 = bhp_array[i ];
|
||||
const double& y1 = bhp_array[i+1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
else if (bhp <= bhp_array[0]) {
|
||||
//TODO: LOG extrapolation
|
||||
@ -484,7 +556,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[1];
|
||||
const double& y0 = bhp_array[0];
|
||||
const double& y1 = bhp_array[1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
//Target bhp greater than all values in array, extrapolate
|
||||
else if (bhp > bhp_array[nthp-1]) {
|
||||
@ -493,7 +565,7 @@ double VFPProdProperties::thp(int table_id,
|
||||
const double& x1 = thp_array[nthp-1];
|
||||
const double& y0 = bhp_array[nthp-2];
|
||||
const double& y1 = bhp_array[nthp-1];
|
||||
thp = find_x(x0, x1, y0, y1, bhp);
|
||||
thp = detail::findX(x0, x1, y0, y1, bhp);
|
||||
}
|
||||
else {
|
||||
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
|
||||
@ -505,6 +577,9 @@ double VFPProdProperties::thp(int table_id,
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
|
||||
auto entry = m_tables.find(table_id);
|
||||
if (entry == m_tables.end()) {
|
||||
@ -515,193 +590,10 @@ const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
|
||||
}
|
||||
}
|
||||
|
||||
VFPProdProperties::InterpData VFPProdProperties::find_interp_data(const double& value, const std::vector<double>& values) {
|
||||
InterpData retval;
|
||||
|
||||
//If we only have one value in our vector, return that
|
||||
if (values.size() == 1) {
|
||||
retval.ind_[0] = 0;
|
||||
retval.ind_[1] = 0;
|
||||
retval.inv_dist_ = 0.0;
|
||||
retval.factor_ = 0.0;
|
||||
}
|
||||
// Else search in the vector
|
||||
else {
|
||||
//First element greater than or equal to value
|
||||
//Start with the second element, so that floor_iter does not go out of range
|
||||
//Don't access out-of-range, therefore values.end()-1
|
||||
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
||||
|
||||
//Find last element smaller than range
|
||||
auto floor_iter = ceil_iter-1;
|
||||
|
||||
//Find the indices
|
||||
retval.ind_[0] = floor_iter - values.begin();
|
||||
retval.ind_[1] = ceil_iter - values.begin();
|
||||
|
||||
//Find interpolation ratio
|
||||
double dist = (*ceil_iter - *floor_iter);
|
||||
if (std::abs(dist) > 0.0) {
|
||||
//Possible source for floating point error here if value and floor are large,
|
||||
//but very close to each other
|
||||
retval.inv_dist_ = 1.0 / dist;
|
||||
retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
|
||||
}
|
||||
else {
|
||||
retval.inv_dist_ = 0.0;
|
||||
retval.factor_ = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("unroll-loops")
|
||||
#endif
|
||||
|
||||
VFPProdProperties::adb_like VFPProdProperties::interpolate(
|
||||
const VFPProdTable::array_type& array,
|
||||
const InterpData& flo_i,
|
||||
const InterpData& thp_i,
|
||||
const InterpData& wfr_i,
|
||||
const InterpData& gfr_i,
|
||||
const InterpData& alq_i) {
|
||||
|
||||
//Values and derivatives in a 5D hypercube
|
||||
adb_like nn[2][2][2][2][2];
|
||||
|
||||
|
||||
//Pick out nearest neighbors (nn) to our evaluation point
|
||||
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
||||
//we copy to (nn) will fit better in cache than the full original table for the
|
||||
//interpolation below.
|
||||
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
for (int a=0; a<=1; ++a) {
|
||||
for (int f=0; f<=1; ++f) {
|
||||
//Shorthands for indexing
|
||||
const int ti = thp_i.ind_[t];
|
||||
const int wi = wfr_i.ind_[w];
|
||||
const int gi = gfr_i.ind_[g];
|
||||
const int ai = alq_i.ind_[a];
|
||||
const int fi = flo_i.ind_[f];
|
||||
|
||||
//Copy element
|
||||
nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Calculate derivatives
|
||||
//Note that the derivative of the two end points of a line aligned with the
|
||||
//"axis of the derivative" are equal
|
||||
for (int i=0; i<=1; ++i) {
|
||||
for (int j=0; j<=1; ++j) {
|
||||
for (int k=0; k<=1; ++k) {
|
||||
for (int l=0; l<=1; ++l) {
|
||||
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
|
||||
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
|
||||
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
|
||||
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
|
||||
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
|
||||
|
||||
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
|
||||
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
|
||||
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
|
||||
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
|
||||
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
||||
|
||||
// Remove dimensions one by one
|
||||
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
||||
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
||||
// axis, leaving a 1D, problem, etc.
|
||||
t2 = flo_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
for (int a=0; a<=1; ++a) {
|
||||
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t2 = alq_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
for (int g=0; g<=1; ++g) {
|
||||
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t2 = gfr_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
for (int w=0; w<=1; ++w) {
|
||||
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
|
||||
}
|
||||
}
|
||||
|
||||
t2 = wfr_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
for (int t=0; t<=1; ++t) {
|
||||
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
|
||||
}
|
||||
|
||||
t2 = thp_i.factor_;
|
||||
t1 = (1.0-t2);
|
||||
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
|
||||
|
||||
return nn[0][0][0][0][0];
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC pop_options //unroll loops
|
||||
#endif
|
||||
|
||||
|
||||
double VFPProdProperties::find_x(const double& x0,
|
||||
const double& x1,
|
||||
const double& y0,
|
||||
const double& y1,
|
||||
const double& y) {
|
||||
const double dx = x1 - x0;
|
||||
const double dy = y1 - y0;
|
||||
|
||||
/**
|
||||
* y = y0 + (dy / dx) * (x - x0)
|
||||
* => x = x0 + (y - y0) * (dx / dy)
|
||||
*
|
||||
* If dy is zero, use x1 as the value.
|
||||
*/
|
||||
|
||||
double x = 0.0;
|
||||
|
||||
if (dy != 0.0) {
|
||||
x = x0 + (y-y0) * (dx/dy);
|
||||
}
|
||||
else {
|
||||
x = x1;
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -152,117 +152,11 @@ public:
|
||||
const double& bhp,
|
||||
const double& alq) const;
|
||||
|
||||
/**
|
||||
* Computes the flo parameter according to the flo_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::FLO_TYPE& type) {
|
||||
switch (type) {
|
||||
case VFPProdTable::FLO_OIL:
|
||||
//Oil = liquid phase
|
||||
return liquid;
|
||||
case VFPProdTable::FLO_LIQ:
|
||||
//Liquid = aqua + liquid phases
|
||||
return aqua + liquid;
|
||||
case VFPProdTable::FLO_GAS:
|
||||
//Gas = vapor phase
|
||||
return vapour;
|
||||
case VFPProdTable::FLO_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the wfr parameter according to the wfr_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::WFR_TYPE& type) {
|
||||
switch(type) {
|
||||
case VFPProdTable::WFR_WOR: {
|
||||
//Water-oil ratio = water / oil
|
||||
T wor = aqua / liquid;
|
||||
return zeroIfNan(wor);
|
||||
}
|
||||
case VFPProdTable::WFR_WCT:
|
||||
//Water cut = water / (water + oil)
|
||||
return zeroIfNan(aqua / (aqua + liquid));
|
||||
case VFPProdTable::WFR_WGR:
|
||||
//Water-gas ratio = water / gas
|
||||
return zeroIfNan(aqua / vapour);
|
||||
case VFPProdTable::WFR_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the gfr parameter according to the gfr_type_
|
||||
* @return Production rate of oil, gas or liquid.
|
||||
*/
|
||||
template <typename T>
|
||||
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
|
||||
const VFPProdTable::GFR_TYPE& type) {
|
||||
switch(type) {
|
||||
case VFPProdTable::GFR_GOR:
|
||||
// Gas-oil ratio = gas / oil
|
||||
return zeroIfNan(vapour / liquid);
|
||||
case VFPProdTable::GFR_GLR:
|
||||
// Gas-liquid ratio = gas / (oil + water)
|
||||
return zeroIfNan(vapour / (liquid + aqua));
|
||||
case VFPProdTable::GFR_OGR:
|
||||
// Oil-gas ratio = oil / gas
|
||||
return zeroIfNan(liquid / vapour);
|
||||
case VFPProdTable::GFR_INVALID: //Intentional fall-through
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
// Map which connects the table number with the table itself
|
||||
std::map<int, const VFPProdTable*> m_tables;
|
||||
|
||||
/**
|
||||
* Helper struct for linear interpolation
|
||||
*/
|
||||
struct InterpData {
|
||||
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
|
||||
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
|
||||
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
|
||||
double factor_; // Interpolation factor
|
||||
};
|
||||
|
||||
/**
|
||||
* Helper function to find indices etc. for linear interpolation
|
||||
*/
|
||||
static InterpData find_interp_data(const double& value, const std::vector<double>& values);
|
||||
|
||||
/**
|
||||
* Helper function which interpolates data using the indices etc. given in the inputs.
|
||||
*/
|
||||
static adb_like interpolate(const VFPProdTable::array_type& array,
|
||||
const InterpData& flo_i,
|
||||
const InterpData& thp_i,
|
||||
const InterpData& wfr_i,
|
||||
const InterpData& gfr_i,
|
||||
const InterpData& alq_i);
|
||||
|
||||
/**
|
||||
* Helper function that finds x for a given value of y for a line
|
||||
* *NOTE ORDER OF ARGUMENTS*
|
||||
*/
|
||||
static double find_x(const double& x0,
|
||||
const double& x1,
|
||||
const double& y0,
|
||||
const double& y1,
|
||||
const double& y);
|
||||
|
||||
|
||||
/**
|
||||
@ -275,19 +169,6 @@ private:
|
||||
*/
|
||||
const VFPProdTable* getProdTable(int table_id) const;
|
||||
|
||||
static inline double zeroIfNan(const double& value) {
|
||||
return (std::isnan(value)) ? 0.0 : value;
|
||||
}
|
||||
|
||||
static inline ADB zeroIfNan(const ADB& values) {
|
||||
Selector<ADB::V::Scalar> not_nan_selector(values.value(), Selector<ADB::V::Scalar>::NotNaN);
|
||||
|
||||
const ADB::V z = ADB::V::Zero(values.size());
|
||||
const ADB zero = ADB::constant(z, values.blockPattern());
|
||||
|
||||
ADB retval = not_nan_selector.select(values, zero);
|
||||
return retval;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
@ -42,11 +42,182 @@
|
||||
|
||||
#include <opm/autodiff/VFPProperties.hpp>
|
||||
#include <opm/autodiff/VFPProdProperties.hpp>
|
||||
#include <opm/autodiff/VFPHelpers.hpp>
|
||||
|
||||
|
||||
|
||||
const double max_d_tol = 1.0e-10;
|
||||
const double sad_tol = 1.0e-8;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
struct ConversionFixture {
|
||||
typedef Opm::VFPProdProperties::ADB ADB;
|
||||
|
||||
ConversionFixture() :
|
||||
num_wells(5),
|
||||
aqua(ADB::null()),
|
||||
liquid(ADB::null()),
|
||||
vapour(ADB::null())
|
||||
{
|
||||
ADB::V aqua_v(num_wells);
|
||||
ADB::V liquid_v(num_wells);
|
||||
ADB::V vapour_v(num_wells);
|
||||
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
aqua_v[i] = 300+num_wells*15;
|
||||
liquid_v[i] = 500+num_wells*15;
|
||||
vapour_v[i] = 700+num_wells*15;
|
||||
}
|
||||
|
||||
aqua = ADB::constant(aqua_v);
|
||||
liquid = ADB::constant(liquid_v);
|
||||
vapour = ADB::constant(vapour_v);
|
||||
}
|
||||
|
||||
~ConversionFixture() {
|
||||
|
||||
}
|
||||
|
||||
int num_wells;
|
||||
|
||||
ADB aqua;
|
||||
ADB liquid;
|
||||
ADB vapour;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE( ConversionTests, ConversionFixture )
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getFlo)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_flo_oil(num_wells);
|
||||
std::vector<double> ref_flo_liq(num_wells);
|
||||
std::vector<double> ref_flo_gas(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_flo_oil[i] = liquid.value()[i];
|
||||
ref_flo_liq[i] = aqua.value()[i] + liquid.value()[i];
|
||||
ref_flo_gas[i] = vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_OIL);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_oil.begin(), ref_flo_oil.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_LIQ);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_liq.begin(), ref_flo_liq.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_GAS);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_gas.begin(), ref_flo_gas.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getWFR)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_wfr_wor(num_wells);
|
||||
std::vector<double> ref_wfr_wct(num_wells);
|
||||
std::vector<double> ref_wfr_wgr(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_wfr_wor[i] = aqua.value()[i] / liquid.value()[i];
|
||||
ref_wfr_wct[i] = aqua.value()[i] / (aqua.value()[i] + liquid.value()[i]);
|
||||
ref_wfr_wgr[i] = aqua.value()[i] / vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WOR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wor.begin(), ref_wfr_wor.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WCT);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wct.begin(), ref_wfr_wct.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WGR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wgr.begin(), ref_wfr_wgr.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getGFR)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_gfr_gor(num_wells);
|
||||
std::vector<double> ref_gfr_glr(num_wells);
|
||||
std::vector<double> ref_gfr_ogr(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_gfr_gor[i] = vapour.value()[i] / liquid.value()[i];
|
||||
ref_gfr_glr[i] = vapour.value()[i] / (liquid.value()[i] + aqua.value()[i]);
|
||||
ref_gfr_ogr[i] = liquid.value()[i] / vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GOR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_gor.begin(), ref_gfr_gor.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GLR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_glr.begin(), ref_gfr_glr.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::detail::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_OGR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_ogr.begin(), ref_gfr_ogr.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END() // unit tests
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -353,9 +524,9 @@ BOOST_AUTO_TEST_CASE(InterpolatePlane)
|
||||
const double liquid = m / static_cast<double>(n);
|
||||
|
||||
//Find values that should be in table
|
||||
double flo = properties->getFlo(aqua, liquid, vapour, table.getFloType());
|
||||
double wfr = properties->getWFR(aqua, liquid, vapour, table.getWFRType());
|
||||
double gfr = properties->getGFR(aqua, liquid, vapour, table.getGFRType());
|
||||
double flo = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
|
||||
double wfr = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
|
||||
double gfr = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
|
||||
|
||||
//Calculate reference
|
||||
adb_like reference;
|
||||
@ -437,9 +608,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlane)
|
||||
const double liquid = m / static_cast<double>(n);
|
||||
|
||||
//Find values that should be in table
|
||||
double v = properties->getFlo(aqua, liquid, vapour, table.getFloType());
|
||||
double y = properties->getWFR(aqua, liquid, vapour, table.getWFRType());
|
||||
double z = properties->getGFR(aqua, liquid, vapour, table.getGFRType());
|
||||
double v = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
|
||||
double y = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
|
||||
double z = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
|
||||
|
||||
double reference = x + 2*y + 3*z+ 4*u + 5*v;
|
||||
reference_sum += reference;
|
||||
@ -524,9 +695,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlaneADB)
|
||||
double reference = 0.0;
|
||||
for (int w=0; w < num_wells; ++w) {
|
||||
//Find values that should be in table
|
||||
double v = properties->getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType());
|
||||
double y = properties->getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType());
|
||||
double z = properties->getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType());
|
||||
double v = Opm::detail::getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType());
|
||||
double y = Opm::detail::getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType());
|
||||
double z = Opm::detail::getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType());
|
||||
|
||||
reference = x*(w+1) + 2*y + 3*z + 4*u*(w+1) + 5*v;
|
||||
value = bhp_val[w];
|
||||
@ -668,155 +839,6 @@ BOOST_AUTO_TEST_SUITE_END() // Trivial tests
|
||||
|
||||
|
||||
|
||||
struct ConversionFixture {
|
||||
typedef Opm::VFPProdProperties::ADB ADB;
|
||||
|
||||
ConversionFixture() :
|
||||
num_wells(5),
|
||||
aqua(ADB::null()),
|
||||
liquid(ADB::null()),
|
||||
vapour(ADB::null())
|
||||
{
|
||||
ADB::V aqua_v(num_wells);
|
||||
ADB::V liquid_v(num_wells);
|
||||
ADB::V vapour_v(num_wells);
|
||||
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
aqua_v[i] = 300+num_wells*15;
|
||||
liquid_v[i] = 500+num_wells*15;
|
||||
vapour_v[i] = 700+num_wells*15;
|
||||
}
|
||||
|
||||
aqua = ADB::constant(aqua_v);
|
||||
liquid = ADB::constant(liquid_v);
|
||||
vapour = ADB::constant(vapour_v);
|
||||
}
|
||||
|
||||
~ConversionFixture() {
|
||||
|
||||
}
|
||||
|
||||
int num_wells;
|
||||
|
||||
ADB aqua;
|
||||
ADB liquid;
|
||||
ADB vapour;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE( ConversionTests, ConversionFixture )
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getFlo)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_flo_oil(num_wells);
|
||||
std::vector<double> ref_flo_liq(num_wells);
|
||||
std::vector<double> ref_flo_gas(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_flo_oil[i] = liquid.value()[i];
|
||||
ref_flo_liq[i] = aqua.value()[i] + liquid.value()[i];
|
||||
ref_flo_gas[i] = vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_OIL);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_oil.begin(), ref_flo_oil.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_LIQ);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_liq.begin(), ref_flo_liq.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getFlo(aqua, liquid, vapour, Opm::VFPProdTable::FLO_GAS);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_flo_gas.begin(), ref_flo_gas.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getWFR)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_wfr_wor(num_wells);
|
||||
std::vector<double> ref_wfr_wct(num_wells);
|
||||
std::vector<double> ref_wfr_wgr(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_wfr_wor[i] = aqua.value()[i] / liquid.value()[i];
|
||||
ref_wfr_wct[i] = aqua.value()[i] / (aqua.value()[i] + liquid.value()[i]);
|
||||
ref_wfr_wgr[i] = aqua.value()[i] / vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WOR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wor.begin(), ref_wfr_wor.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WCT);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wct.begin(), ref_wfr_wct.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getWFR(aqua, liquid, vapour, Opm::VFPProdTable::WFR_WGR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_wfr_wgr.begin(), ref_wfr_wgr.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(getGFR)
|
||||
{
|
||||
//Compute reference solutions
|
||||
std::vector<double> ref_gfr_gor(num_wells);
|
||||
std::vector<double> ref_gfr_glr(num_wells);
|
||||
std::vector<double> ref_gfr_ogr(num_wells);
|
||||
for (int i=0; i<num_wells; ++i) {
|
||||
ref_gfr_gor[i] = vapour.value()[i] / liquid.value()[i];
|
||||
ref_gfr_glr[i] = vapour.value()[i] / (liquid.value()[i] + aqua.value()[i]);
|
||||
ref_gfr_ogr[i] = liquid.value()[i] / vapour.value()[i];
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GOR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_gor.begin(), ref_gfr_gor.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_GLR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_glr.begin(), ref_gfr_glr.end(), computed, computed+num_wells);
|
||||
}
|
||||
|
||||
{
|
||||
ADB flo = Opm::VFPProdProperties::getGFR(aqua, liquid, vapour, Opm::VFPProdTable::GFR_OGR);
|
||||
const double* computed = &flo.value()[0];
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(ref_gfr_ogr.begin(), ref_gfr_ogr.end(), computed, computed+num_wells);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END() // unit tests
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user