Merge pull request #3097 from hakonhagland/glift_groups

Implements gas lift optimization for groups.
This commit is contained in:
Tor Harald Sandve
2021-03-31 21:31:12 +02:00
committed by GitHub
15 changed files with 3204 additions and 1011 deletions

View File

@@ -51,10 +51,13 @@
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GConSale.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/GasLiftStage2.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
@@ -103,6 +106,15 @@ namespace Opm {
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
typedef typename Opm::BaseAuxiliaryModule<TypeTag>::NeighborSet NeighborSet;
using GasLiftSingleWell = Opm::GasLiftSingleWell<TypeTag>;
using GasLiftStage2 = Opm::GasLiftStage2<TypeTag>;
using GLiftWellState = Opm::GasLiftWellState<TypeTag>;
using GLiftWellStateMap =
std::map<std::string,std::unique_ptr<GLiftWellState>>;
using GLiftOptWells =
std::map<std::string,std::unique_ptr<GasLiftSingleWell>>;
using GLiftProdWells =
std::map<std::string,const WellInterface<TypeTag> *>;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
@@ -346,6 +358,8 @@ namespace Opm {
// Check if well equations is converged.
ConvergenceReport getWellConvergence(const std::vector<Scalar>& B_avg, const bool checkGroupConvergence = false) const;
const PhaseUsage& phaseUsage() const { return phase_usage_; }
const SimulatorReportSingle& lastReport() const;
void addWellContributions(SparseMatrixAdapter& jacobian) const
@@ -532,6 +546,14 @@ namespace Opm {
void assembleWellEq(const double dt, Opm::DeferredLogger& deferred_logger);
void maybeDoGasLiftOptimize(Opm::DeferredLogger& deferred_logger);
void gliftDebugShowALQ(Opm::DeferredLogger& deferred_logger);
void gasLiftOptimizationStage2(Opm::DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GLiftWellStateMap &map);
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep(Opm::DeferredLogger& deferred_logger);

View File

@@ -306,8 +306,8 @@ namespace Opm {
Opm::DeferredLogger local_deferredLogger;
this->resetWellState();
this->wellState().disableGliftOptimization();
updateAndCommunicateGroupData();
this->wellState().gliftTimeStepInit();
const int reportStepIdx = ebosSimulator_.episodeIndex();
const double simulationTime = ebosSimulator_.time();
std::string exc_msg;
@@ -1025,10 +1025,8 @@ namespace Opm {
updateWellControls(local_deferredLogger, /* check group controls */ false);
}
gliftDebug("assemble() : running assembleWellEq()..", local_deferredLogger);
this->wellState().enableGliftOptimization();
maybeDoGasLiftOptimize(local_deferredLogger);
assembleWellEq(dt, local_deferredLogger);
this->wellState().disableGliftOptimization();
} catch (const std::runtime_error& e) {
exc_type = ExceptionType::RUNTIME_ERROR;
exc_msg = e.what();
@@ -1047,13 +1045,67 @@ namespace Opm {
last_report_.assemble_time_well += perfTimer.stop();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
maybeDoGasLiftOptimize(Opm::DeferredLogger& deferred_logger)
{
this->wellState().enableGliftOptimization();
GLiftOptWells glift_wells;
GLiftProdWells prod_wells;
GLiftWellStateMap state_map;
// Stage1: Optimize single wells not checking any group limits
for (auto& well : well_container_) {
well->gasLiftOptimizationStage1(
this->wellState(), ebosSimulator_, deferred_logger,
prod_wells, glift_wells, state_map);
}
gasLiftOptimizationStage2(deferred_logger, prod_wells, glift_wells, state_map);
if (this->glift_debug) gliftDebugShowALQ(deferred_logger);
this->wellState().disableGliftOptimization();
}
// If a group has any production rate constraints, and/or a limit
// on its total rate of lift gas supply, allocate lift gas
// preferentially to the wells that gain the most benefit from
// it. Lift gas increments are allocated in turn to the well that
// currently has the largest weighted incremental gradient. The
// procedure takes account of any limits on the group production
// rate or lift gas supply applied to any level of group.
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
gasLiftOptimizationStage2(Opm::DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GLiftWellStateMap &glift_well_state_map)
{
GasLiftStage2 glift {*this, ebosSimulator_, deferred_logger, this->wellState(),
prod_wells, glift_wells, glift_well_state_map};
glift.runOptimize();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
gliftDebugShowALQ(Opm::DeferredLogger& deferred_logger)
{
for (auto& well : this->well_container_) {
if (well->isProducer()) {
auto alq = this->wellState().getALQ(well->name());
const std::string msg = fmt::format("ALQ_REPORT : {} : {}",
well->name(), alq);
gliftDebug(msg, deferred_logger);
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assembleWellEq(const double dt, Opm::DeferredLogger& deferred_logger)
{
for (auto& well : well_container_) {
well->maybeDoGasLiftOptimization(this->wellState(), ebosSimulator_, deferred_logger);
well->assembleWellEq(ebosSimulator_, dt, this->wellState(), deferred_logger);
}
}

View File

@@ -1,153 +0,0 @@
/*
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_GASLIFT_RUNTIME_HEADER_INCLUDED
#define OPM_GASLIFT_RUNTIME_HEADER_INCLUDED
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
// NOTE: StandardWell.hpp includes ourself (GasLiftRuntime.hpp), so we need
// to forward declare StandardWell for it to be defined in this file.
namespace Opm {
template<typename TypeTag> class StandardWell;
}
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <cassert>
#include <iostream>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <vector>
#include <fmt/format.h>
namespace Opm
{
template<class TypeTag>
class GasLiftRuntime {
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using WellState = WellStateFullyImplicitBlackoil;
using StdWell = Opm::StandardWell<TypeTag>;
// TODO: same definition with WellInterface, and
// WellStateFullyImplicitBlackoil eventually they should go
// to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
struct OptimizeState;
public:
GasLiftRuntime(
const StdWell &std_well,
const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
WellState &well_state,
const Well::ProductionControls &controls
);
void runOptimize();
private:
void computeInitialWellRates_();
void computeWellRates_(double bhp, std::vector<double> &potentials);
void debugShowIterationInfo_(OptimizeState &state, double alq);
void debugShowStartIteration_(double alq, bool increase);
void displayDebugMessage_(const std::string &msg);
void displayWarning_();
void displayWarning_(std::string warning);
bool getGasRateWithLimit_(double& new_rate, const std::vector<double> &potentials);
bool getOilRateWithLimit_(double& new_rate, const std::vector<double> &potentials);
void logSuccess_();
bool runOptimizeLoop_(bool increase);
void setAlqMaxRate_(const GasLiftOpt::Well &well);
void setAlqMinRate_(const GasLiftOpt::Well &well);
bool tryIncreaseLiftGas_();
bool tryDecreaseLiftGas_();
void updateWellStateAlqFixedValue_(const GasLiftOpt::Well &well);
bool useFixedAlq_(const GasLiftOpt::Well &well);
void warnMaxIterationsExceeded_();
const Well::ProductionControls &controls_;
DeferredLogger &deferred_logger_;
const Simulator &ebos_simulator_;
std::vector<double> potentials_;
const StdWell &std_well_;
const SummaryState &summary_state_;
WellState &well_state_;
std::string well_name_;
bool debug; // extra debug output
double alpha_w_;
double alpha_g_;
double eco_grad_;
int gas_pos_;
bool has_run_init_ = false;
double increment_;
double max_alq_;
int max_iterations_;
double min_alq_;
double new_alq_;
int oil_pos_;
bool optimize_;
double orig_alq_;
int water_pos_;
struct OptimizeState {
OptimizeState( GasLiftRuntime &parent_, bool increase_ ) :
parent(parent_),
increase(increase_),
it(0),
stop_iteration(false),
bhp(-1)
{}
GasLiftRuntime &parent;
bool increase;
int it;
bool stop_iteration;
double bhp;
double addOrSubtractAlqIncrement(double alq);
double calcGradient(double oil_rate, double new_oil_rate,
double gas_rate, double new_gas_rate);
bool checkAlqOutsideLimits(double alq, double oil_rate);
bool checkEcoGradient(double gradient);
bool checkOilRateExceedsTarget(double oil_rate);
bool checkRate(double rate, double limit, const std::string rate_str);
bool checkWellRatesViolated(std::vector<double> &potentials);
bool computeBhpAtThpLimit(double alq);
double getBhpWithLimit();
void warn_(std::string msg) {parent.displayWarning_(msg);}
};
};
} // namespace Opm
#include "GasLiftRuntime_impl.hpp"
#endif // OPM_GASLIFT_RUNTIME_HEADER_INCLUDED

View File

@@ -1,816 +0,0 @@
/*
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <optional>
#include <string>
template<typename TypeTag>
Opm::GasLiftRuntime<TypeTag>::
GasLiftRuntime(
const StdWell &std_well,
const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
WellState &well_state,
const Well::ProductionControls &controls
) :
controls_{controls},
deferred_logger_{deferred_logger},
ebos_simulator_{ebos_simulator},
potentials_(well_state.numPhases(),0.0),
std_well_{std_well},
summary_state_{summary_state},
well_state_{well_state},
debug{false} // extra debugging output
{
int well_index = this->std_well_.indexOfWell();
const Well::ProducerCMode& control_mode
= well_state_.currentProductionControls()[well_index];
if (control_mode != Well::ProducerCMode::THP)
throw std::logic_error("Bug in flow - invalid control mode detected\n");
const Opm::Schedule& schedule = this->ebos_simulator_.vanguard().schedule();
const int report_step_idx = this->ebos_simulator_.episodeIndex();
auto ecl_well = this->std_well_.wellEcl();
this->well_name_ = ecl_well.name();
const GasLiftOpt& glo = schedule.glo(report_step_idx);
// NOTE: According to LIFTOPT, item 1:
// "Increment size for lift gas injection rate. Lift gas is
// allocated to individual wells in whole numbers of the increment
// size. If gas lift optimization is no longer required, it can be
// turned off by entering a zero or negative number."
// NOTE: This condition was checked in doGasLiftOptimize() in StandardWell
// so it can be assumed that increment_ > 0
this->increment_ = glo.gaslift_increment();
assert( this->increment_ > 0);
// NOTE: The manual (see LIFTOPT, item 2) does not mention
// any default value or restrictions on the economic gradient.
// TODO: The value of the gradient would most likely be a positive
// number. Should we warn or fail on a negative value?
// A negative value for the economic gradient would mean that
// the oil production is decreasing with increased liftgas
// injection (which seems strange)
this->eco_grad_ = glo.min_eco_gradient();
auto& gl_well = glo.well(this->well_name_);
if(useFixedAlq_(gl_well)) {
updateWellStateAlqFixedValue_(gl_well);
this->optimize_ = false; // lift gas supply is fixed
}
else {
setAlqMaxRate_(gl_well);
this->optimize_ = true;
}
computeInitialWellRates_();
if(this->optimize_) {
setAlqMinRate_(gl_well);
// NOTE: According to item 4 in WLIFTOPT, this value does not
// have to be positive.
// TODO: Does it make sense to have a negative value?
this->alpha_w_ = gl_well.weight_factor();
if (this->alpha_w_ <= 0 ) {
displayWarning_("Nonpositive value for alpha_w ignored");
this->alpha_w_ = 1.0;
}
// NOTE: According to item 6 in WLIFTOPT:
// "If this value is greater than zero, the incremental gas rate will influence
// the calculation of the incremental gradient and may be used
// to discourage the allocation of lift gas to wells which produce more gas."
// TODO: Does this mean that we should ignore this value if it
// is negative?
this->alpha_g_ = gl_well.inc_weight_factor();
const auto& pu = std_well_.phaseUsage();
this->oil_pos_ = pu.phase_pos[Oil];
this->gas_pos_ = pu.phase_pos[Gas];
this->water_pos_ = pu.phase_pos[Water];
this->new_alq_ = this->orig_alq_;
// TODO: adhoc value.. Should we keep max_iterations_ as a safety measure
// or does it not make sense to have it?
this->max_iterations_ = 1000;
}
}
/****************************************
* Methods in alphabetical order
****************************************/
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
computeInitialWellRates_()
{
// get the alq value used for this well for the previous time step, or
// if gas lift optimization has not been applied to this well yet, the
// default value is used.
this->orig_alq_ = this->well_state_.getALQ(this->well_name_);
// NOTE: compute initial rates with current ALQ
this->std_well_.computeWellRatesWithThpAlqProd(
this->ebos_simulator_, this->summary_state_, this->deferred_logger_,
this->potentials_, this->orig_alq_);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
computeWellRates_(double bhp, std::vector<double> &potentials)
{
this->std_well_.computeWellRatesWithBhp(
this->ebos_simulator_, bhp, potentials, this->deferred_logger_);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
debugShowIterationInfo_(OptimizeState &state, double alq)
{
const std::string msg = fmt::format("iteration {}, ALQ = {}", state.it, alq);
this->displayDebugMessage_(msg);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
debugShowStartIteration_(double alq, bool increase)
{
const std::string msg =
fmt::format("starting {} iteration, ALQ = {}, oilrate = {}",
(increase ? "increase" : "decrease"),
alq,
-this->potentials_[this->oil_pos_]);
this->displayDebugMessage_(msg);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
displayDebugMessage_(const std::string &msg)
{
const std::string message = fmt::format(
" GLIFT (DEBUG) : Well {} : {}", this->well_name_, msg);
this->deferred_logger_.info(message);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
displayWarning_(std::string msg)
{
const std::string message = fmt::format(
"GAS LIFT OPTIMIZATION, WELL {} : {}", this->well_name_, msg);
this->deferred_logger_.warning("WARNING", message);
}
// TODO: what if the gas_rate_target_ has been defaulted
// (i.e. value == 0, meaning: "No limit") but the
// oil_rate_target_ has not been defaulted ?
// If the new_oil_rate exceeds the oil_rate_target_ it is cut back,
// but the same cut-back will not happen for the new_gas_rate
// Seems like an inconsistency, since alq should in this
// case also be adjusted (to the smaller value that would
// give oil target rate) but then the gas rate would also be smaller?
// The effect of not reducing the gas rate (if it should be
// reduced?) is that a too large value is used in the
// computation of the economic gradient making the gradient
// smaller than it should be since the term appears in the denominator.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
getGasRateWithLimit_(double& new_rate, const std::vector<double> &potentials)
{
new_rate = -potentials[this->gas_pos_];
bool limit = false;
if (this->controls_.hasControl(Well::ProducerCMode::GRAT)) {
auto target = this->controls_.gas_rate;
if (new_rate > target) {
new_rate = target;
limit = true;
}
}
return limit;
}
// NOTE: If the computed oil rate is larger than the target
// rate of the well, we reduce it to the target rate. This
// will make the economic gradient smaller than it would be
// if we did not reduce the rate, and it is less
// likely that the current gas lift increment will be
// accepted.
// TODO: If it still is accepted, we should ideally reduce the alq
// also since we also reduced the rate. This might involve
// some sort of iteration though..
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
getOilRateWithLimit_(double& new_rate, const std::vector<double> &potentials)
{
new_rate = -potentials[this->oil_pos_];
bool limit = false;
if (this->controls_.hasControl(Well::ProducerCMode::ORAT)) {
auto target = this->controls_.oil_rate;
if (new_rate > target) {
new_rate = target;
limit = true;
}
}
if (this->controls_.hasControl(Well::ProducerCMode::LRAT)) {
auto target = this->controls_.liquid_rate;
auto oil_rate = -potentials[this->oil_pos_];
auto water_rate = -potentials[this->water_pos_];
auto liq_rate = oil_rate + water_rate;
if (liq_rate > target) {
new_rate = oil_rate * (target/liq_rate);
limit = true;
}
}
return limit;
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
logSuccess_()
{
const std::string message = fmt::format(
"GLIFT, WELL {} {} ALQ from {} to {}",
this->well_name_,
((this->new_alq_ > this->orig_alq_) ? "increased" : "decreased"),
this->orig_alq_,
this->new_alq_);
this->deferred_logger_.info(message);
}
/* - At this point we know that this is a production well, and that its current
* control mode is THP.
*
* - We would like to check if it is possible to
* 1) increase the oil production by adding lift gas injection to the
* well, or if that is not possible, if we 2) should reduce the amount
* of lift gas injected due to a too small gain in oil production
* (with the current lift gas injection rate)
* - For 1) above, we should not add lift gas if it would cause an oil
* rate target to be exceeded, and for 2) we should not reduce the
* amount of liftgas injected below the minimum lift gas injection
* rate.
*
* NOTE: If reducing or adding lift-gas further would cause
* one of the well targets like ORAT, WRAT, GRAT, LRAT, CRAT, RESV, BHP,
* to become violated we should stop the lift gas optimization
* loop.. and then updateWellControls() will later (hopefully) switch the well's
* control mode from THP to the mode of the violated target.
*
* - Lift gas is added if it is economical viable depending on
* the ratio of oil gained compared to the amount of liftgas added.
*
* - Lift gas supply may be limited.
*
* - The current value of liftgas for the well is stored in the WellState object.
*
* - It is assumed that the oil production rate is concave function F
* of the amount of lift gas, such that it increases initially due to the
* reduced density of the mixture in the tubing. However, as the
* lift gas supply is increased further, friction pressure losses in the
* tubing become more important, and the production rate peaks and
* then starts to decrease.
* Since lift gas injection has a price, e.g. compression costs can
* be expressed as a cost per unit rate of lift gas injection,
* it must be balanced against the value of the extra amount of
* oil produced. Thus there is a "minimum economic gradient" of oil
* production rate versus lift gas injection rate, at which the
* value of the extra amount of oil produced by a small increase in
* the lift gas injection rate is equal to the cost of supplying the
* extra amount of lift gas. The optimum lift gas injection rate is then somewhat
* lower than the peak value.
*
* Based on this assumption, we know that if the gradient (derivative) of F is
* positive, but greater than the economic gradient (assuming the
* economic gradient is positive), we should add
* lift gas. On the other hand, if the gradient of F is negative or
* if it is positive but smaller than the economic gradient, the amount
* of lift gas injected should be decreased.
*
*/
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
runOptimize()
{
if (this->optimize_) {
if (!tryIncreaseLiftGas_()) {
if (!tryDecreaseLiftGas_()) {
return;
}
}
logSuccess_();
this->well_state_.setALQ(this->well_name_, this->new_alq_);
}
// NOTE: In addition to the new ALQ value, we also implicitly
// return this->potentials_
}
// INPUT:
// - increase (boolean) :
// - true : try increase the lift gas supply,
// - false : try decrease lift gas supply.
//
// OUTPUT:
// - return value: success (true/false)
// - potentials_ : updated well potentials if success
// - new_alq_ : updated alq if success
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
runOptimizeLoop_(bool increase)
{
auto cur_potentials = this->potentials_; // make copy, since we may fail..
auto oil_rate = -cur_potentials[this->oil_pos_];
auto gas_rate = -cur_potentials[this->gas_pos_];
bool success = false; // did we succeed to increase alq?
auto cur_alq = this->orig_alq_;
if (cur_alq == 0 && !increase) // we don't decrease alq below zero
return false;
auto alq = cur_alq;
OptimizeState state {*this, increase};
if (this->debug) debugShowStartIteration_(alq, increase);
while (!state.stop_iteration && (++state.it <= this->max_iterations_)) {
if (state.checkWellRatesViolated(cur_potentials)) break;
if (state.checkAlqOutsideLimits(alq, oil_rate)) break;
alq = state.addOrSubtractAlqIncrement(alq);
if(this->debug) debugShowIterationInfo_(state, alq);
if (!state.computeBhpAtThpLimit(alq)) break;
// NOTE: if BHP is below limit, we set state.stop_iteration = true
auto bhp = state.getBhpWithLimit();
computeWellRates_(bhp, cur_potentials);
double new_oil_rate = 0.0;
bool oil_is_limited = getOilRateWithLimit_(new_oil_rate, cur_potentials);
if (oil_is_limited && !increase) //if oil is limited we do not want to decrease
break;
double new_gas_rate = 0.0;
bool gas_is_limited = getGasRateWithLimit_(new_gas_rate, cur_potentials);
if (gas_is_limited && increase) // if gas is limited we do not want to increase
break;
auto gradient = state.calcGradient(
oil_rate, new_oil_rate, gas_rate, new_gas_rate);
if (state.checkEcoGradient(gradient)) {
if (state.it == 1) {
break;
}
else {
state.stop_iteration = true;
}
}
cur_alq = alq;
success = true;
oil_rate = new_oil_rate;
gas_rate = new_gas_rate;
}
if (state.it > this->max_iterations_) {
warnMaxIterationsExceeded_();
}
if (success) {
this->potentials_ = cur_potentials;
this->new_alq_ = cur_alq;
}
return success;
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
setAlqMaxRate_(const GasLiftOpt::Well &well)
{
auto& max_alq_optional = well.max_rate();
if (max_alq_optional) {
// NOTE: To prevent extrapolation of the VFP tables, any value
// entered here must not exceed the largest ALQ value in the well's VFP table.
this->max_alq_ = *max_alq_optional;
}
else { // i.e. WLIFTOPT, item 3 has been defaulted
// According to the Eclipse manual for WLIFTOPT, item 3:
// The default value should be set to the largest ALQ
// value in the well's VFP table
const auto& table = std_well_.vfp_properties_->getProd()->getTable(
this->controls_.vfp_table_number);
const auto& alq_values = table.getALQAxis();
// Assume the alq_values are sorted in ascending order, so
// the last item should be the largest value:
this->max_alq_ = alq_values.back();
}
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
setAlqMinRate_(const GasLiftOpt::Well &well)
{
// NOTE: According to WLIFTOPT item 5 :
// if min_rate() is negative, it means: allocate at least enough lift gas
// to enable the well to flow
// NOTE: "to enable the well to flow" : How to interpret this?
// We choose to interpret it to mean a positive oil rate as returned from
//
// computeWellRates_(bhp, cur_potentials);
//
// So even if the well is producing gas, if the oil rate is zero
// we say that the "well is not flowing".
//
// Note that if WECON item 2 is set, the well can be shut off
// before the flow rate reaches zero. Also,
// if bhp drops below the bhp lower limit, the well might switch to bhp
// control before the oil rate becomes zero.
this->min_alq_ = well.min_rate();
if (this->min_alq_ > 0) {
if (this->min_alq_ >= this->max_alq_) {
// NOTE: We reset the value to a negative value.
// negative value means: Allocate at least enough lift gas
// to allow the well to flow.
// TODO: Consider other options for resetting the value..
this->min_alq_ = -1;
displayWarning_("Minimum ALQ value is larger than maximum ALQ value!"
" Resetting value.");
}
}
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
tryDecreaseLiftGas_()
{
return runOptimizeLoop_(/*increase=*/ false);
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
tryIncreaseLiftGas_()
{
return runOptimizeLoop_(/*increase=*/ true);
}
// Called when we should use a fixed ALQ value
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
updateWellStateAlqFixedValue_(const GasLiftOpt::Well &well)
{
auto& max_alq_optional = well.max_rate();
if (max_alq_optional) {
// According to WLIFTOPT, item 3:
// If item 2 is NO, then item 3 is regarded as the fixed
// lift gas injection rate for the well.
auto new_alq = *max_alq_optional;
this->well_state_.setALQ(this->well_name_, new_alq);
}
// else {
// // If item 3 is defaulted, the lift gas rate remains
// // unchanged at its current value.
//}
}
// Determine if we should use a fixed ALQ value.
//
// From the manual for WLIFTOPT, item 2:
// Is the well's lift gas injection rate to be calculated by the
// optimization facility?
// - YES : The well's lift gas injection rate is calculated by the
// optimization facility.
// - NO : The well's lift gas injection rate remains fixed at a
// value that can be set either in Item 3 of this keyword, or in
// Item 12 of keyword WCONPROD, or with keyword WELTARG.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
useFixedAlq_(const GasLiftOpt::Well &well)
{
auto wliftopt_item2 = well.use_glo();
if (wliftopt_item2) {
return false;
}
else {
// auto& max_alq_optional = well.max_rate();
// if (max_alq_optional) {
// According to WLIFTOPT, item 3:
// If item 2 is NO, then item 3 is regarded as the fixed
// lift gas injection rate for the well.
// }
// else {
// If item 3 is defaulted, the lift gas rate remains
// unchanged at its current value.
// }
return true;
}
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
warnMaxIterationsExceeded_()
{
std::ostringstream ss;
ss << "Max iterations (" << this->max_iterations_ << ") exceeded in "
<< "gas lift optimization for well " << this->well_name_;
deferred_logger_.warning("MAX_ITERATIONS_EXCEEDED", ss.str());
}
/****************************************
* Methods declared in OptimizeState
****************************************/
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
addOrSubtractAlqIncrement(double alq)
{
if (this->increase) {
alq += this->parent.increment_;
// NOTE: if max_alq_ was defaulted in WCONPROD, item 3, it has
// already been set to the largest value in the VFP table in
// the contructor of GasLiftRuntime
if (alq > this->parent.max_alq_) alq = this->parent.max_alq_;
}
else {
alq -= this->parent.increment_;
if (this->parent.min_alq_ > 0) {
if (alq < this->parent.min_alq_) alq = this->parent.min_alq_;
}
}
return alq;
}
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
calcGradient(double oil_rate, double new_oil_rate, double gas_rate, double new_gas_rate)
{
auto dqo = new_oil_rate - oil_rate;
auto dqg = new_gas_rate - gas_rate;
// TODO: Should we do any error checks on the calculation of the
// gradient?
// NOTE: The eclipse techincal description (chapter 25) says:
// "The gas rate term in the denominator is subject to the
// constraint alpha_g_ * dqg >= 0.0"
auto gradient = (this->parent.alpha_w_ * dqo) /
(this->parent.increment_ + this->parent.alpha_g_*dqg);
return gradient;
}
// NOTE: According to WLIFTOPT item 5 :
// if min_rate() is negative, it means: allocate at least enough lift gas
// to enable the well to flow
// We will interpret this as (see discussion above GasLiftRuntime()
// in this file): Allocate at least the amount of lift gas needed to
// get a positive oil production rate.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkAlqOutsideLimits(double alq, double oil_rate)
{
std::ostringstream ss;
bool result = false;
if (this->increase) {
if (alq >= this->parent.max_alq_) {
ss << "ALQ >= " << this->parent.max_alq_ << " (max limit), "
<< "stopping iteration";
result = true;
}
else {
// NOTE: A negative min_alq_ means: allocate at least enough lift gas
// to enable the well to flow, see WCONPROD item 5.
if (this->parent.min_alq_ < 0) {
result = false;
}
else {
// NOTE: checking for a lower limit should not be necessary
// when increasing alq.. so this is just to catch an
// illegal state at an early point.
if (alq < this->parent.min_alq_ ) {
warn_("unexpected: alq below lower limit when trying to "
"increase lift gas. aborting iteration.");
result = true;
}
else {
result = false;
}
}
}
}
else { // we are decreasing lift gas
// NOTE: A negative min_alq_ means: allocate at least enough lift gas
// to enable the well to flow, see WCONPROD item 5.
if (this->parent.min_alq_ < 0) {
// If the oil rate is already zero or negative (non-flowing well)
// we assume we will not be able to increase it by decreasing the lift gas
if ( oil_rate <= 0 ) {
ss << "Oil rate ( " << oil_rate << " ) <= 0 when decreasing lift gas. "
<< "We will not be able to make this well flowing by decreasing "
<< "lift gas, stopping iteration.";
result = true;
}
else {
result = false;
}
}
else {
if (alq <= this->parent.min_alq_ ) {
ss << "ALQ <= " << this->parent.min_alq_ << " (min limit), "
<< "stopping iteration";
result = true;
}
else {
// NOTE: checking for an upper limit should not be necessary
// when decreasing alq.. so this is just to catch an
// illegal state at an early point.
if (alq >= this->parent.max_alq_) {
warn_( "unexpected: alq above upper limit when trying to "
"decrease lift gas. aborting iteration.");
result = true;
}
else {
result = false;
}
}
}
}
if (this->parent.debug) this->parent.displayDebugMessage_(ss.str());
return result;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkEcoGradient(double gradient)
{
std::ostringstream ss;
bool result = false;
if (this->parent.debug) {
ss << "checking gradient: " << gradient;
}
if (this->increase) {
if (this->parent.debug) ss << " <= " << this->parent.eco_grad_ << " --> ";
if (gradient <= this->parent.eco_grad_) {
if (this->parent.debug) ss << "true";
result = true;
}
else {
if (this->parent.debug) ss << "false";
}
}
else { // decreasing lift gas
if (this->parent.debug) ss << " >= " << this->parent.eco_grad_ << " --> ";
if (gradient >= this->parent.eco_grad_) {
if (this->parent.debug) ss << "true";
result = true;
}
else {
if (this->parent.debug) ss << "false";
}
}
if (this->parent.debug) this->parent.displayDebugMessage_(ss.str());
return result;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkRate(double rate, double limit, const std::string rate_str)
{
if (limit < rate ) {
if (this->parent.debug) {
const std::string msg = fmt::format(
"iteration {} : rate {} exceeds target rate {}. Stopping iteration",
this->it, rate_str, rate, limit);
this->parent.displayDebugMessage_(msg);
}
return true;
}
return false;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkWellRatesViolated(std::vector<double> &potentials)
{
if (this->parent.controls_.hasControl(Well::ProducerCMode::ORAT)) {
auto oil_rate = -potentials[this->parent.oil_pos_];
if (this->checkRate(oil_rate, this->parent.controls_.oil_rate, "oil"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::WRAT)) {
auto water_rate = -potentials[this->parent.water_pos_];
if (this->checkRate(water_rate, this->parent.controls_.water_rate, "water"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::GRAT)) {
auto gas_rate = -potentials[this->parent.gas_pos_];
if (this->checkRate(gas_rate, this->parent.controls_.gas_rate, "gas"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::LRAT)) {
auto oil_rate = -potentials[this->parent.oil_pos_];
auto water_rate = -potentials[this->parent.water_pos_];
auto liq_rate = oil_rate + water_rate;
if (this->checkRate(liq_rate, this->parent.controls_.liquid_rate, "liquid"))
return true;
}
// TODO: Also check RESV, see checkIndividualContraints() in
// WellInterface_impl.hpp
// TODO: Check group contraints?
return false;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
computeBhpAtThpLimit(double alq)
{
auto bhp_at_thp_limit = this->parent.std_well_.computeBhpAtThpLimitProdWithAlq(
this->parent.ebos_simulator_,
this->parent.summary_state_,
this->parent.deferred_logger_,
alq);
if (!bhp_at_thp_limit) {
const std::string msg = fmt::format(
"Failed in getting converged bhp potential for well {}",
this->parent.well_name_);
this->parent.deferred_logger_.warning(
"FAILURE_GETTING_CONVERGED_POTENTIAL", msg);
return false;
}
this->bhp = *bhp_at_thp_limit;
return true;
}
// NOTE: When calculating the gradient, determine what the well would produce if
// the lift gas injection rate were increased by one increment. The
// production rates are adjusted if necessary to obey
// any rate or BHP limits that the well may be subject to. From this
// information, calculate the well's "weighted incremental
// gradient"
//
// TODO: What does it mean to "adjust the production rates" given a
// BHP limit?
//
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
getBhpWithLimit()
{
auto bhp_update = this->bhp;
if (this->parent.controls_.hasControl(Well::ProducerCMode::BHP)) {
auto limit = this->parent.controls_.bhp_limit;
// TODO: is it possible that bhp falls below the limit when
// adding lift gas? I.e. if this->increase == true..
if (this->bhp < limit) {
// TODO: we keep the current alq, but it should probably
// be adjusted since we changed computed bhp. But how?
bhp_update = limit;
// Stop iteration, but first check the economic gradient
// with the bhp_update. If the gradient looks OK (see the
// main optimize loop) we keep the current ALQ value.
this->stop_iteration = true;
}
}
return bhp_update;
}

View File

@@ -0,0 +1,235 @@
/*
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_GASLIFT_SINGLE_WELL_HEADER_INCLUDED
#define OPM_GASLIFT_SINGLE_WELL_HEADER_INCLUDED
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
// NOTE: StandardWell.hpp includes ourself (GasLiftSingleWell.hpp), so we need
// to forward declare StandardWell for it to be defined in this file.
namespace Opm {
template<typename TypeTag> class StandardWell;
}
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <vector>
#include <utility>
#include <fmt/format.h>
namespace Opm
{
template<class TypeTag>
class GasLiftSingleWell
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using WellState = WellStateFullyImplicitBlackoil;
using StdWell = Opm::StandardWell<TypeTag>;
using GLiftWellState = Opm::GasLiftWellState<TypeTag>;
// TODO: same definition with WellInterface, and
// WellStateFullyImplicitBlackoil eventually they should go
// to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
static constexpr double ALQ_EPSILON = 1e-8;
struct OptimizeState;
class Stage2State;
public:
GasLiftSingleWell(
const StdWell &std_well,
const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
WellState &well_state
);
struct GradInfo;
std::optional<GradInfo> calcIncOrDecGradient(
double oil_rate, double gas_rate, double alq, bool increase) const;
std::pair<double, double> getStage2Rates();
const WellInterface<TypeTag> &getStdWell() const { return std_well_; }
bool hasStage2Rates();
std::unique_ptr<GLiftWellState> runOptimize();
const std::string& name() const {return well_name_; }
void updateStage2State(const GradInfo &gi, bool increase);
struct GradInfo
{
GradInfo() { }
GradInfo(double grad_, double new_oil_rate_, bool oil_is_limited_,
double new_gas_rate_, bool gas_is_limited_,
double alq_, bool alq_is_limited_) :
grad{grad_},
new_oil_rate{new_oil_rate_},
oil_is_limited{oil_is_limited_},
new_gas_rate{new_gas_rate_},
gas_is_limited{gas_is_limited_},
alq{alq_},
alq_is_limited{alq_is_limited_} {}
double grad;
double new_oil_rate;
bool oil_is_limited;
double new_gas_rate;
bool gas_is_limited;
double alq;
bool alq_is_limited;
};
private:
std::pair<std::optional<double>, bool> addOrSubtractAlqIncrement_(
double alq, bool increase) const;
double calcEcoGradient_(double oil_rate, double new_oil_rate,
double gas_rate, double new_gas_rate, bool increase) const;
bool checkALQequal_(double alq1, double alq2) const;
bool checkInitialALQmodified_(double alq, double initial_alq) const;
bool checkWellRatesViolated_(
std::vector<double> &potentials,
const std::function<bool(double, double, const std::string &)> &callback,
bool increase
);
std::optional<double> computeBhpAtThpLimit_(double alq) const;
bool computeInitialWellRates_(std::vector<double> &potentials);
void computeWellRates_(
double bhp, std::vector<double> &potentials, bool debug_output=true) const;
void debugCheckNegativeGradient_(double grad, double alq, double new_alq,
double oil_rate, double new_oil_rate, double gas_rate,
double new_gas_rate, bool increase) const;
void debugShowAlqIncreaseDecreaseCounts_();
void debugShowBhpAlqTable_();
void debugShowStartIteration_(double alq, bool increase, double oil_rate);
void debugShowTargets_();
void displayDebugMessage_(const std::string &msg) const;
void displayWarning_(std::string warning);
std::pair<double, bool> getBhpWithLimit_(double bhp) const;
std::pair<double, bool> getGasRateWithLimit_(
const std::vector<double> &potentials) const;
std::tuple<double,double,bool,bool> getInitialRatesWithLimit_(
const std::vector<double> &potentials);
std::pair<double, bool> getOilRateWithLimit_(
const std::vector<double> &potentials) const;
std::tuple<double,double,bool,bool,double>
increaseALQtoPositiveOilRate_(double alq, double oil_rate, double gas_rate,
bool oil_is_limited, bool gas_is_limited, std::vector<double> &potentials);
std::tuple<double,double,bool,bool,double>
increaseALQtoMinALQ_(double alq, double oil_rate, double gas_rate,
bool oil_is_limited, bool gas_is_limited, std::vector<double> &potentials);
void logSuccess_(double alq);
std::tuple<double,double,bool,bool,double>
reduceALQtoOilTarget_(double alq, double oil_rate, double gas_rate,
bool oil_is_limited, bool gas_is_limited, std::vector<double> &potentials);
std::unique_ptr<GLiftWellState> runOptimize1_();
std::unique_ptr<GLiftWellState> runOptimize2_();
std::unique_ptr<GLiftWellState> runOptimizeLoop_(bool increase);
void setAlqMaxRate_(const GasLiftOpt::Well &well);
void setAlqMinRate_(const GasLiftOpt::Well &well);
std::unique_ptr<GLiftWellState> tryIncreaseLiftGas_();
std::unique_ptr<GLiftWellState> tryDecreaseLiftGas_();
void updateWellStateAlqFixedValue_(const GasLiftOpt::Well &well);
bool useFixedAlq_(const GasLiftOpt::Well &well);
void warnMaxIterationsExceeded_();
DeferredLogger &deferred_logger_;
const Simulator &ebos_simulator_;
const StdWell &std_well_;
const SummaryState &summary_state_;
WellState &well_state_;
std::string well_name_;
const Well &ecl_well_;
const Well::ProductionControls controls_;
int num_phases_;
bool debug; // extra debug output
bool debug_limit_increase_decrease_;
bool debug_abort_if_decrease_and_oil_is_limited_ = false;
bool debug_abort_if_increase_and_gas_is_limited_ = false;
double alpha_w_;
double alpha_g_;
double eco_grad_;
int gas_pos_;
bool has_run_init_ = false;
double increment_;
double max_alq_;
int max_iterations_;
double min_alq_;
int oil_pos_;
bool optimize_;
double orig_alq_;
int water_pos_;
struct OptimizeState
{
OptimizeState( GasLiftSingleWell &parent_, bool increase_ ) :
parent{parent_},
increase{increase_},
it{0},
stop_iteration{false},
bhp{-1}
{}
GasLiftSingleWell &parent;
bool increase;
int it;
bool stop_iteration;
double bhp;
std::pair<std::optional<double>,bool> addOrSubtractAlqIncrement(double alq);
double calcEcoGradient(double oil_rate, double new_oil_rate,
double gas_rate, double new_gas_rate);
bool checkAlqOutsideLimits(double alq, double oil_rate);
bool checkEcoGradient(double gradient);
bool checkNegativeOilRate(double oil_rate);
bool checkOilRateExceedsTarget(double oil_rate);
bool checkRate(double rate, double limit, const std::string &rate_str) const;
bool checkWellRatesViolated(std::vector<double> &potentials);
bool computeBhpAtThpLimit(double alq);
void debugShowIterationInfo(double alq);
double getBhpWithLimit();
void warn_(std::string msg) {parent.displayWarning_(msg);}
};
};
#include "GasLiftSingleWell_impl.hpp"
} // namespace Opm
#endif // OPM_GASLIFT_SINGLE_WELL_HEADER_INCLUDED

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,225 @@
/*
Copyright 2021 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_GASLIFT_STAGE2_HEADER_INCLUDED
#define OPM_GASLIFT_STAGE2_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/Group.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
// NOTE: BlackoilWellModel.hpp includes ourself (GasLiftStage2.hpp), so we need
// to forward declare BlackoilWellModel for it to be defined in this file.
namespace Opm {
template<typename TypeTag> class BlackoilWellModel;
}
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#include <cassert>
#include <functional>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <vector>
#include <fmt/format.h>
namespace Opm
{
template<class TypeTag>
class GasLiftStage2 {
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using WellState = WellStateFullyImplicitBlackoil;
using BlackoilWellModel = Opm::BlackoilWellModel<TypeTag>;
using GasLiftSingleWell = Opm::GasLiftSingleWell<TypeTag>;
using GLiftWellState = Opm::GasLiftWellState<TypeTag>;
using GLiftOptWells = typename BlackoilWellModel::GLiftOptWells;
using GLiftProdWells = typename BlackoilWellModel::GLiftProdWells;
using GLiftWellStateMap = typename BlackoilWellModel::GLiftWellStateMap;
using GradPair = std::pair<std::string, double>;
using GradPairItr = std::vector<GradPair>::iterator;
using GradInfo = typename GasLiftSingleWell::GradInfo;
using GradMap = std::map<std::string, GradInfo>;
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
public:
GasLiftStage2(
const BlackoilWellModel &well_model,
const Simulator &ebos_simulator,
DeferredLogger &deferred_logger,
WellState &well_state,
GLiftProdWells &prod_wells,
GLiftOptWells &glift_wells,
GLiftWellStateMap &state_map
);
void runOptimize();
private:
void addOrRemoveALQincrement_(
GradMap &grad_map, const std::string well_name, bool add);
std::optional<GradInfo> calcIncOrDecGrad_(
const std::string name, const GasLiftSingleWell &gs_well, bool increase);
bool checkRateAlreadyLimited_(GLiftWellState &state, bool increase);
GradInfo deleteDecGradItem_(const std::string &name);
GradInfo deleteIncGradItem_(const std::string &name);
GradInfo deleteGrad_(const std::string &name, bool increase);
void displayDebugMessage_(const std::string &msg);
void displayDebugMessage2B_(const std::string &msg);
void displayDebugMessage_(const std::string &msg, const std::string &group_name);
void displayWarning_(const std::string &msg, const std::string &group_name);
void displayWarning_(const std::string &msg);
std::tuple<double, double, double> getCurrentGroupRates_(
const Opm::Group &group);
std::tuple<double, double, double> getCurrentGroupRatesRecursive_(
const Opm::Group &group);
std::tuple<double, double, double> getCurrentWellRates_(
const std::string &well_name, const std::string &group_name);
std::vector<GasLiftSingleWell *> getGroupGliftWells_(
const Opm::Group &group);
void getGroupGliftWellsRecursive_(
const Opm::Group &group, std::vector<GasLiftSingleWell *> &wells);
std::pair<double, double> getStdWellRates_(const WellInterface<TypeTag> &well);
void optimizeGroup_(const Opm::Group &group);
void optimizeGroupsRecursive_(const Opm::Group &group);
void recalculateGradientAndUpdateData_(
GradPairItr &grad_itr, bool increase,
std::vector<GradPair> &grads, std::vector<GradPair> &other_grads);
void redistributeALQ_(
std::vector<GasLiftSingleWell *> &wells, const Opm::Group &group,
std::vector<GradPair> &inc_grads, std::vector<GradPair> &dec_grads);
void removeSurplusALQ_(
const Opm::Group &group,
std::vector<GradPair> &inc_grads, std::vector<GradPair> &dec_grads);
void saveGrad_(GradMap &map, const std::string &name, GradInfo &grad);
void saveDecGrad_(const std::string &name, GradInfo &grad);
void saveIncGrad_(const std::string &name, GradInfo &grad);
void sortGradients_(std::vector<GradPair> &grads);
std::optional<GradInfo> updateGrad_(
const std::string &name, GradInfo &grad, bool increase);
void updateGradVector_(
const std::string &name, std::vector<GradPair> &grads, double grad);
DeferredLogger &deferred_logger_;
const Simulator &ebos_simulator_;
const BlackoilWellModel &well_model_;
WellState &well_state_;
GLiftProdWells &prod_wells_;
GLiftOptWells &stage1_wells_;
GLiftWellStateMap &well_state_map_;
int report_step_idx_;
const SummaryState &summary_state_;
const Schedule &schedule_;
const PhaseUsage &phase_usage_;
const GasLiftOpt& glo_;
GradMap inc_grads_;
GradMap dec_grads_;
bool debug_;
int max_iterations_ = 1000;
//int time_step_idx_;
int nonlinear_iteration_idx_;
struct OptimizeState {
OptimizeState( GasLiftStage2 &parent_, const Opm::Group &group_ ) :
parent{parent_},
group{group_},
it{0}
{}
GasLiftStage2 &parent;
const Opm::Group &group;
int it;
using GradInfo = typename GasLiftStage2::GradInfo;
using GradPair = typename GasLiftStage2::GradPair;
using GradPairItr = typename GasLiftStage2::GradPairItr;
using GradMap = typename GasLiftStage2::GradMap;
void calculateEcoGradients(std::vector<GasLiftSingleWell *> &wells,
std::vector<GradPair> &inc_grads, std::vector<GradPair> &dec_grads);
bool checkAtLeastTwoWells(std::vector<GasLiftSingleWell *> &wells);
void debugShowIterationInfo();
std::pair<std::optional<GradPairItr>,std::optional<GradPairItr>>
getEcoGradients(
std::vector<GradPair> &inc_grads, std::vector<GradPair> &dec_grads);
void recalculateGradients(
std::vector<GradPair> &inc_grads, std::vector<GradPair> &dec_grads,
GradPairItr &min_dec_grad_itr, GradPairItr &max_inc_grad_itr);
void redistributeALQ( GradPairItr &min_dec_grad, GradPairItr &max_inc_grad);
private:
void displayDebugMessage_(const std::string &msg);
void displayWarning_(const std::string &msg);
};
struct SurplusState {
SurplusState( GasLiftStage2 &parent_, const Opm::Group &group_,
double oil_rate_, double gas_rate_, double alq_, double min_eco_grad_,
double oil_target_, double gas_target_,
std::optional<double> max_glift_) :
parent{parent_},
group{group_},
oil_rate{oil_rate_},
gas_rate{gas_rate_},
alq{alq_},
min_eco_grad{min_eco_grad_},
oil_target{oil_target_},
gas_target{gas_target_},
max_glift{max_glift_},
it{0}
{}
GasLiftStage2 &parent;
const Opm::Group &group;
double oil_rate;
double gas_rate;
double alq;
const double min_eco_grad;
const double oil_target;
const double gas_target;
std::optional<double> max_glift;
int it;
void addOrRemoveALQincrement(
GradMap &grad_map, const std::string well_name, bool add);
bool checkALQlimit();
bool checkEcoGradient(const std::string &well_name, double eco_grad);
bool checkGasTarget();
bool checkOilTarget();
void updateRates(const std::string &name, const GradInfo &gi);
private:
};
};
#include "GasLiftStage2_impl.hpp"
} // namespace Opm
#endif // OPM_GASLIFT_STAGE2_HEADER_INCLUDED

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,82 @@
/*
Copyright 2021 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_GASLIFT_WELL_STATE_HEADER_INCLUDED
#define OPM_GASLIFT_WELL_STATE_HEADER_INCLUDED
#include <memory>
#include <optional>
#include <string>
#include <utility>
namespace Opm
{
template<class TypeTag>
class GasLiftWellState
{
public:
//GasLiftWellState() { }
GasLiftWellState(double oil_rate, bool oil_is_limited,
double gas_rate, bool gas_is_limited,
double alq, bool alq_is_limited, std::optional<bool> increase) :
oil_rate_{oil_rate},
oil_is_limited_{oil_is_limited},
gas_rate_{gas_rate},
gas_is_limited_{gas_is_limited},
alq_{alq},
alq_is_limited_{alq_is_limited},
increase_{increase}
{}
double alq() const { return alq_; }
bool alqChanged() { return increase_.has_value(); }
bool alqIsLimited() const { return alq_is_limited_; }
bool gasIsLimited() const { return gas_is_limited_; }
double gasRate() const { return gas_rate_; }
std::pair<double, double> getRates() { return {oil_rate_, gas_rate_}; }
std::optional<bool> increase() const { return increase_; }
bool oilIsLimited() const { return oil_is_limited_; }
double oilRate() const { return oil_rate_; }
void update(double oil_rate, bool oil_is_limited,
double gas_rate, bool gas_is_limited,
double alq, bool alq_is_limited,
bool increase)
{
oil_rate_ = oil_rate;
oil_is_limited_ = oil_is_limited;
gas_rate_ = gas_rate;
gas_is_limited_ = gas_is_limited;
alq_ = alq;
alq_is_limited_ = alq_is_limited;
increase_ = increase;
}
private:
double oil_rate_;
bool oil_is_limited_;
double gas_rate_;
bool gas_is_limited_;
double alq_;
bool alq_is_limited_;
std::optional<bool> increase_;
};
#include "GasLiftWellState_impl.hpp"
} // namespace Opm
#endif // OPM_GASLIFT_WELL_STATE_HEADER_INCLUDED

View File

@@ -0,0 +1,18 @@
/*
Copyright 2021 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/

View File

@@ -45,6 +45,10 @@ namespace Opm
using typename Base::RateConverterType;
using typename Base::SparseMatrixAdapter;
using typename Base::FluidState;
using typename Base::GasLiftSingleWell;
using typename Base::GLiftProdWells;
using typename Base::GLiftOptWells;
using typename Base::GLiftWellStateMap;
/// the number of reservior equations
using Base::numEq;
@@ -120,10 +124,13 @@ namespace Opm
virtual void initPrimaryVariablesEvaluation() const override;
virtual void maybeDoGasLiftOptimization (
virtual void gasLiftOptimizationStage1 (
WellState&,
const Simulator&,
DeferredLogger&
DeferredLogger&,
GLiftProdWells &,
GLiftOptWells &,
GLiftWellStateMap &
) const override {
// Not implemented yet
}

View File

@@ -27,11 +27,13 @@
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#endif
#include <opm/simulators/wells/GasLiftRuntime.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/models/blackoil/blackoilpolymermodules.hh>
#include <opm/models/blackoil/blackoilsolventmodules.hh>
@@ -46,6 +48,7 @@
#include <dune/common/dynvector.hh>
#include <dune/common/dynmatrix.hh>
#include <memory>
#include <optional>
#include <fmt/format.h>
@@ -73,7 +76,10 @@ namespace Opm
using typename Base::SparseMatrixAdapter;
using typename Base::FluidState;
using typename Base::RateVector;
using GasLiftHandler = Opm::GasLiftRuntime<TypeTag>;
using typename Base::GasLiftSingleWell;
using typename Base::GLiftOptWells;
using typename Base::GLiftProdWells;
using typename Base::GLiftWellStateMap;
using Base::numEq;
using Base::numPhases;
@@ -250,10 +256,13 @@ namespace Opm
DeferredLogger& deferred_logger
) const;
virtual void maybeDoGasLiftOptimization (
virtual void gasLiftOptimizationStage1 (
WellState& well_state,
const Simulator& ebosSimulator,
DeferredLogger& deferred_logger
DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells,
GLiftOptWells &glift_wells,
GLiftWellStateMap &state_map
) const override;
bool checkGliftNewtonIterationIdxOk(
@@ -399,6 +408,9 @@ namespace Opm
// Enable GLIFT debug mode. This will enable output of logging messages.
bool glift_debug = false;
// Optimize only wells under THP control
bool glift_optimize_only_thp_wells = true;
const EvalWell& getBhp() const;
EvalWell getQs(const int comp_idx) const;

View File

@@ -275,7 +275,7 @@ namespace Opm
return primary_variables_evaluation_[SFrac];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
@@ -300,7 +300,7 @@ namespace Opm
well_fraction -= primary_variables_evaluation_[GFrac];
}
return well_fraction;
}
@@ -1115,7 +1115,7 @@ namespace Opm
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
@@ -1213,7 +1213,7 @@ namespace Opm
std::vector<double> F(number_of_phases_, 0.0);
double F_solvent = 0.0;
if ( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ) {
const int oil_pos = pu.phase_pos[Oil];
const int oil_pos = pu.phase_pos[Oil];
F[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
@@ -1234,7 +1234,7 @@ namespace Opm
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
const int water_pos = pu.phase_pos[Water];
F[water_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
@@ -1244,7 +1244,7 @@ namespace Opm
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = 1.0;
}
@@ -2692,23 +2692,42 @@ namespace Opm
{
gliftDebug("checking if GLIFT should be done..", deferred_logger);
std::size_t num_procs = ebos_simulator.gridView().comm().size();
if (num_procs > 1u) {
const std::string msg = fmt::format(" GLIFT: skipping optimization. "
"Parallel run not supported yet: num procs = {}", num_procs);
deferred_logger.warning(msg);
return false;
}
if (!well_state.gliftOptimizationEnabled()) {
gliftDebug("Optimization disabled in WellState", deferred_logger);
return false;
}
const int well_index = index_of_well_;
const Well::ProducerCMode& control_mode
= well_state.currentProductionControls()[well_index];
if (control_mode != Well::ProducerCMode::THP ) {
gliftDebug("Not THP control", deferred_logger);
if (well_state.gliftCheckAlqOscillation(name())) {
gliftDebug("further optimization skipped due to oscillation in ALQ",
deferred_logger);
return false;
}
if (this->glift_optimize_only_thp_wells) {
const int well_index = index_of_well_;
const Well::ProducerCMode& control_mode
= well_state.currentProductionControls()[well_index];
if (control_mode != Well::ProducerCMode::THP ) {
gliftDebug("Not THP control", deferred_logger);
return false;
}
}
if (!checkGliftNewtonIterationIdxOk(ebos_simulator, deferred_logger)) {
return false;
}
const int report_step_idx = ebos_simulator.episodeIndex();
const Opm::Schedule& schedule = ebos_simulator.vanguard().schedule();
const GasLiftOpt& glo = schedule.glo(report_step_idx);
if (!glo.has_well(name())) {
gliftDebug("Gas Lift not activated: WLIFTOPT is probably missing",
deferred_logger);
return false;
}
auto increment = glo.gaslift_increment();
// NOTE: According to the manual: LIFTOPT, item 1, :
// "Increment size for lift gas injection rate. Lift gas is
@@ -2771,7 +2790,7 @@ namespace Opm
{
if (this->glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : Well {} : {}", this->name(), msg);
" GLIFT (DEBUG) : SW : Well {} : {}", this->name(), msg);
deferred_logger.info(message);
}
}
@@ -2819,30 +2838,37 @@ namespace Opm
);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
maybeDoGasLiftOptimization(
WellState& well_state,
const Simulator& ebos_simulator,
Opm::DeferredLogger& deferred_logger) const
gasLiftOptimizationStage1(
WellState& well_state,
const Simulator& ebos_simulator,
Opm::DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells,
GLiftOptWells &glift_wells,
GLiftWellStateMap &glift_state_map
//std::map<std::string, WellInterface *> &prod_wells
) const
{
const auto& well = well_ecl_;
if (well.isProducer()) {
const auto& summary_state = ebos_simulator.vanguard().summaryState();
const Well::ProducerCMode& current_control
= well_state.currentProductionControls()[this->index_of_well_];
if ( this->Base::wellHasTHPConstraints(summary_state)
&& current_control != Well::ProducerCMode::BHP ) {
if ( this->Base::wellHasTHPConstraints(summary_state) ) {
if (doGasLiftOptimize(well_state, ebos_simulator, deferred_logger)) {
const auto& controls = well.productionControls(summary_state);
GasLiftHandler glift {
*this, ebos_simulator, summary_state,
deferred_logger, well_state, controls };
glift.runOptimize();
std::unique_ptr<GasLiftSingleWell> glift
= std::make_unique<GasLiftSingleWell>(
*this, ebos_simulator, summary_state,
deferred_logger, well_state);
auto state = glift->runOptimize();
if (state) {
glift_state_map.insert({this->name(), std::move(state)});
glift_wells.insert({this->name(), std::move(glift)});
return;
}
}
}
prod_wells.insert({this->name(), this});
}
}

View File

@@ -41,6 +41,15 @@
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
// NOTE: GasLiftSingleWell.hpp includes StandardWell.hpp which includes ourself
// (WellInterface.hpp), so we need to forward declare GasLiftSingleWell
// for it to be defined in this file. Similar for BlackoilWellModel
namespace Opm {
template<typename TypeTag> class GasLiftSingleWell;
template<typename TypeTag> class BlackoilWellModel;
}
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
@@ -83,6 +92,11 @@ namespace Opm
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using GasLiftSingleWell = Opm::GasLiftSingleWell<TypeTag>;
using GLiftOptWells = typename Opm::BlackoilWellModel<TypeTag>::GLiftOptWells;
using GLiftProdWells = typename Opm::BlackoilWellModel<TypeTag>::GLiftProdWells;
using GLiftWellStateMap =
typename Opm::BlackoilWellModel<TypeTag>::GLiftWellStateMap;
static const int numEq = Indices::numEq;
static const int numPhases = Indices::numPhases;
@@ -174,10 +188,13 @@ namespace Opm
Opm::DeferredLogger& deferred_logger
) = 0;
virtual void maybeDoGasLiftOptimization (
virtual void gasLiftOptimizationStage1 (
WellState& well_state,
const Simulator& ebosSimulator,
DeferredLogger& deferred_logger
DeferredLogger& deferred_logger,
GLiftProdWells& prod_wells,
GLiftOptWells& glift_wells,
GLiftWellStateMap& state_map
) const = 0;
void updateWellTestState(const WellState& well_state,
@@ -324,6 +341,7 @@ namespace Opm
WellState& well_state,
Opm::DeferredLogger& deferred_logger);
const PhaseUsage& phaseUsage() const;
protected:
@@ -435,8 +453,6 @@ namespace Opm
bool changed_to_stopped_this_step_ = false;
const PhaseUsage& phaseUsage() const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;

View File

@@ -1283,10 +1283,66 @@ namespace Opm
this->current_alq_[name] = value;
}
bool gliftCheckAlqOscillation(const std::string &name) const {
if ((this->alq_increase_count_.count(name) == 1) &&
(this->alq_decrease_count_.count(name) == 1))
{
if ((this->alq_increase_count_.at(name) >= 1) &&
(this->alq_decrease_count_.at(name) >= 1))
{
return true;
}
}
return false;
}
int gliftGetAlqDecreaseCount(const std::string &name) {
if (this->alq_decrease_count_.count(name) == 0) {
return 0;
}
else {
return this->alq_decrease_count_[name];
}
}
int gliftGetAlqIncreaseCount(const std::string &name) {
if (this->alq_increase_count_.count(name) == 0) {
return 0;
}
else {
return this->alq_increase_count_[name];
}
}
void gliftUpdateAlqIncreaseCount(const std::string &name, bool increase) {
if (increase) {
if (this->alq_increase_count_.count(name) == 0) {
this->alq_increase_count_[name] = 1;
}
else {
this->alq_increase_count_[name]++;
}
}
else {
if (this->alq_decrease_count_.count(name) == 0) {
this->alq_decrease_count_[name] = 1;
}
else {
this->alq_decrease_count_[name]++;
}
}
}
bool gliftOptimizationEnabled() const {
return do_glift_optimization_;
}
void gliftTimeStepInit() {
this->alq_increase_count_.clear();
this->alq_decrease_count_.clear();
disableGliftOptimization();
}
void disableGliftOptimization() {
do_glift_optimization_ = false;
}
@@ -1325,6 +1381,8 @@ namespace Opm
std::map<std::string, double> group_grat_target_from_sales;
std::map<std::string, double> current_alq_;
std::map<std::string, double> default_alq_;
std::map<std::string, int> alq_increase_count_;
std::map<std::string, int> alq_decrease_count_;
bool do_glift_optimization_;
std::vector<double> perfRateSolvent_;