mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #1250 from GitPaean/refactoring_well_model_June_2017_rebase
well refactoring for flow_ebos
This commit is contained in:
@@ -91,6 +91,7 @@ list (APPEND TEST_SOURCE_FILES
|
||||
tests/test_solventprops_ad.cpp
|
||||
tests/test_multisegmentwells.cpp
|
||||
tests/test_multiphaseupwind.cpp
|
||||
tests/test_wellmodel.cpp
|
||||
# tests/test_thresholdpressure.cpp
|
||||
tests/test_wellswitchlogger.cpp
|
||||
tests/test_timer.cpp
|
||||
@@ -102,6 +103,7 @@ list (APPEND TEST_DATA_FILES
|
||||
tests/VFPPROD2
|
||||
tests/msw.data
|
||||
tests/TESTTIMER.DATA
|
||||
tests/TESTWELLMODEL.DATA
|
||||
)
|
||||
|
||||
|
||||
@@ -239,6 +241,10 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/WellHelpers.hpp
|
||||
opm/autodiff/StandardWells.hpp
|
||||
opm/autodiff/StandardWells_impl.hpp
|
||||
opm/autodiff/WellInterface.hpp
|
||||
opm/autodiff/WellInterface_impl.hpp
|
||||
opm/autodiff/StandardWell.hpp
|
||||
opm/autodiff/StandardWell_impl.hpp
|
||||
opm/autodiff/StandardWellsDense.hpp
|
||||
opm/autodiff/StandardWellsSolvent.hpp
|
||||
opm/autodiff/StandardWellsSolvent_impl.hpp
|
||||
|
||||
@@ -154,7 +154,7 @@ namespace Opm {
|
||||
/// \param[in] terminal_output request output to cout/cerr
|
||||
BlackoilModelEbos(Simulator& ebosSimulator,
|
||||
const ModelParameters& param,
|
||||
const StandardWellsDense<TypeTag>& well_model,
|
||||
StandardWellsDense<TypeTag>& well_model,
|
||||
RateConverterType& rate_converter,
|
||||
const NewtonIterationBlackoilInterface& linsolver,
|
||||
const bool terminal_output
|
||||
@@ -284,10 +284,9 @@ namespace Opm {
|
||||
const int nc = AutoDiffGrid::numCells(grid_);
|
||||
const int nw = numWells();
|
||||
BVector x(nc);
|
||||
BVector xw(nw);
|
||||
|
||||
try {
|
||||
solveJacobianSystem(x, xw);
|
||||
solveJacobianSystem(x);
|
||||
report.linear_solve_time += perfTimer.stop();
|
||||
report.total_linear_iterations += linearIterationsLastSolve();
|
||||
}
|
||||
@@ -322,7 +321,11 @@ namespace Opm {
|
||||
// Apply the update, with considering model-dependent limitations and
|
||||
// chopping of the update.
|
||||
updateState(x,iteration);
|
||||
wellModel().updateWellState(xw, well_state);
|
||||
|
||||
if( nw > 0 )
|
||||
{
|
||||
wellModel().recoverWellSolutionAndUpdateWellState(x, well_state);
|
||||
}
|
||||
report.update_time += perfTimer.stop();
|
||||
}
|
||||
|
||||
@@ -488,7 +491,7 @@ namespace Opm {
|
||||
|
||||
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
||||
/// r is the residual.
|
||||
void solveJacobianSystem(BVector& x, BVector& xw) const
|
||||
void solveJacobianSystem(BVector& x) const
|
||||
{
|
||||
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
|
||||
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
||||
@@ -510,13 +513,6 @@ namespace Opm {
|
||||
Operator opA(ebosJac, well_model_);
|
||||
istlSolver().solve( opA, x, ebosResid );
|
||||
}
|
||||
|
||||
if( xw.size() > 0 )
|
||||
{
|
||||
// recover wells.
|
||||
xw = 0.0;
|
||||
wellModel().recoverVariable(x, xw);
|
||||
}
|
||||
}
|
||||
|
||||
//=====================================================================
|
||||
@@ -766,8 +762,7 @@ namespace Opm {
|
||||
const double pvSumLocal,
|
||||
std::vector< Scalar >& R_sum,
|
||||
std::vector< Scalar >& maxCoeff,
|
||||
std::vector< Scalar >& B_avg,
|
||||
std::vector< Scalar >& maxNormWell )
|
||||
std::vector< Scalar >& B_avg)
|
||||
{
|
||||
// Compute total pore volume (use only owned entries)
|
||||
double pvSum = pvSumLocal;
|
||||
@@ -779,13 +774,12 @@ namespace Opm {
|
||||
std::vector< Scalar > maxBuffer;
|
||||
const int numComp = B_avg.size();
|
||||
sumBuffer.reserve( 2*numComp + 1 ); // +1 for pvSum
|
||||
maxBuffer.reserve( 2*numComp );
|
||||
maxBuffer.reserve( numComp );
|
||||
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
||||
{
|
||||
sumBuffer.push_back( B_avg[ compIdx ] );
|
||||
sumBuffer.push_back( R_sum[ compIdx ] );
|
||||
maxBuffer.push_back( maxCoeff[ compIdx ] );
|
||||
maxBuffer.push_back( maxNormWell[ compIdx ] );
|
||||
}
|
||||
|
||||
// Compute total pore volume
|
||||
@@ -801,11 +795,14 @@ namespace Opm {
|
||||
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
|
||||
{
|
||||
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
|
||||
maxCoeff[ compIdx ] = maxBuffer[ buffIdx ];
|
||||
++buffIdx;
|
||||
|
||||
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
|
||||
maxNormWell[ compIdx ] = maxBuffer[ buffIdx ];
|
||||
}
|
||||
|
||||
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
||||
{
|
||||
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
|
||||
}
|
||||
|
||||
// restore global pore volume
|
||||
@@ -828,7 +825,6 @@ namespace Opm {
|
||||
const double dt = timer.currentStepLength();
|
||||
const double tol_mb = param_.tolerance_mb_;
|
||||
const double tol_cnv = param_.tolerance_cnv_;
|
||||
const double tol_wells = param_.tolerance_wells_;
|
||||
|
||||
const int np = numPhases();
|
||||
const int numComp = numComponents();
|
||||
@@ -836,7 +832,6 @@ namespace Opm {
|
||||
Vector R_sum(numComp, 0.0 );
|
||||
Vector B_avg(numComp, 0.0 );
|
||||
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
|
||||
Vector maxNormWell(numComp, 0.0 );
|
||||
|
||||
const auto& ebosModel = ebosSimulator_.model();
|
||||
const auto& ebosProblem = ebosSimulator_.problem();
|
||||
@@ -896,24 +891,16 @@ namespace Opm {
|
||||
B_avg[ i ] /= Scalar( global_nc_ );
|
||||
}
|
||||
|
||||
// compute maximum of local well residuals
|
||||
const Vector& wellResidual = wellModel().residual();
|
||||
const int nw = wellResidual.size() / numComp;
|
||||
assert(nw * numComp == int(wellResidual.size()));
|
||||
for( int compIdx = 0; compIdx < numComp; ++compIdx )
|
||||
{
|
||||
for ( int w = 0; w < nw; ++w ) {
|
||||
maxNormWell[compIdx] = std::max(maxNormWell[compIdx], std::abs(wellResidual[nw*compIdx + w]));
|
||||
}
|
||||
}
|
||||
// TODO: we remove the maxNormWell for now because the convergence of wells are on a individual well basis.
|
||||
// Anyway, we need to provide some infromation to help debug the well iteration process.
|
||||
|
||||
|
||||
// compute global sum and max of quantities
|
||||
const double pvSum = convergenceReduction(grid_.comm(), pvSumLocal,
|
||||
R_sum, maxCoeff, B_avg, maxNormWell );
|
||||
R_sum, maxCoeff, B_avg);
|
||||
|
||||
Vector CNV(numComp);
|
||||
Vector mass_balance_residual(numComp);
|
||||
Vector well_flux_residual(numComp);
|
||||
|
||||
bool converged_MB = true;
|
||||
bool converged_CNV = true;
|
||||
@@ -927,8 +914,7 @@ namespace Opm {
|
||||
converged_CNV = converged_CNV && (CNV[compIdx] < tol_cnv);
|
||||
// Well flux convergence is only for fluid phases, not other materials
|
||||
// in our current implementation.
|
||||
well_flux_residual[compIdx] = B_avg[compIdx] * maxNormWell[compIdx];
|
||||
converged_Well = converged_Well && (well_flux_residual[compIdx] < tol_wells);
|
||||
converged_Well = wellModel().getWellConvergence(ebosSimulator_, B_avg);
|
||||
|
||||
residual_norms.push_back(CNV[compIdx]);
|
||||
}
|
||||
@@ -965,9 +951,6 @@ namespace Opm {
|
||||
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
||||
msg += " CNV(" + key[ compIdx ] + ") ";
|
||||
}
|
||||
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
||||
msg += " W-FLUX(" + key[ compIdx ] + ")";
|
||||
}
|
||||
OpmLog::note(msg);
|
||||
}
|
||||
std::ostringstream ss;
|
||||
@@ -980,9 +963,6 @@ namespace Opm {
|
||||
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
||||
ss << std::setw(11) << CNV[compIdx];
|
||||
}
|
||||
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
||||
ss << std::setw(11) << well_flux_residual[compIdx];
|
||||
}
|
||||
ss.precision(oprec);
|
||||
ss.flags(oflags);
|
||||
OpmLog::note(ss.str());
|
||||
@@ -992,13 +972,11 @@ namespace Opm {
|
||||
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
||||
|
||||
if (std::isnan(mass_balance_residual[phaseIdx])
|
||||
|| std::isnan(CNV[phaseIdx])
|
||||
|| (phaseIdx < numPhases() && std::isnan(well_flux_residual[phaseIdx]))) {
|
||||
|| std::isnan(CNV[phaseIdx])) {
|
||||
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
|
||||
}
|
||||
if (mass_balance_residual[phaseIdx] > maxResidualAllowed()
|
||||
|| CNV[phaseIdx] > maxResidualAllowed()
|
||||
|| (phaseIdx < numPhases() && well_flux_residual[phaseIdx] > maxResidualAllowed())) {
|
||||
|| CNV[phaseIdx] > maxResidualAllowed()) {
|
||||
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
|
||||
}
|
||||
}
|
||||
@@ -1523,7 +1501,7 @@ namespace Opm {
|
||||
SimulatorReport failureReport_;
|
||||
|
||||
// Well Model
|
||||
StandardWellsDense<TypeTag> well_model_;
|
||||
StandardWellsDense<TypeTag>& well_model_;
|
||||
|
||||
/// \brief Whether we print something to std::cout
|
||||
bool terminal_output_;
|
||||
@@ -1545,13 +1523,7 @@ namespace Opm {
|
||||
const StandardWellsDense<TypeTag>&
|
||||
wellModel() const { return well_model_; }
|
||||
|
||||
/// return the Well struct in the StandardWells
|
||||
const Wells& wells() const { return well_model_.wells(); }
|
||||
|
||||
/// return true if wells are available in the reservoir
|
||||
bool wellsActive() const { return well_model_.wellsActive(); }
|
||||
|
||||
int numWells() const { return wellsActive() ? wells().number_of_wells : 0; }
|
||||
int numWells() const { return well_model_.numWells(); }
|
||||
|
||||
/// return true if wells are available on this process
|
||||
bool localWellsActive() const { return well_model_.localWellsActive(); }
|
||||
|
||||
@@ -294,9 +294,6 @@ void wellsToState( const data::Wells& wells,
|
||||
{
|
||||
// Set base class variables.
|
||||
wellsToState(wells, phases, static_cast<WellStateFullyImplicitBlackoil&>(state));
|
||||
|
||||
// Set wellSolution() variable.
|
||||
state.setWellSolutions(phases);
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -141,7 +141,6 @@ public:
|
||||
ExtraData extra;
|
||||
|
||||
failureReport_ = SimulatorReport();
|
||||
extractLegacyPoreVolume_();
|
||||
extractLegacyDepth_();
|
||||
|
||||
// communicate the initial solution to ebos
|
||||
@@ -480,7 +479,6 @@ protected:
|
||||
activePhases,
|
||||
gravity,
|
||||
legacyDepth_,
|
||||
legacyPoreVolume_,
|
||||
globalNumCells,
|
||||
grid());
|
||||
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
|
||||
@@ -867,22 +865,6 @@ protected:
|
||||
}
|
||||
}
|
||||
|
||||
void extractLegacyPoreVolume_()
|
||||
{
|
||||
const auto& grid = ebosSimulator_.gridManager().grid();
|
||||
const unsigned numCells = grid.size(/*codim=*/0);
|
||||
const auto& ebosProblem = ebosSimulator_.problem();
|
||||
const auto& ebosModel = ebosSimulator_.model();
|
||||
|
||||
legacyPoreVolume_.resize(numCells);
|
||||
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
||||
// todo (?): respect rock compressibility
|
||||
legacyPoreVolume_[cellIdx] =
|
||||
ebosModel.dofTotalVolume(cellIdx)
|
||||
*ebosProblem.porosity(cellIdx);
|
||||
}
|
||||
}
|
||||
|
||||
void extractLegacyDepth_()
|
||||
{
|
||||
const auto& grid = ebosSimulator_.gridManager().grid();
|
||||
@@ -1009,7 +991,6 @@ protected:
|
||||
Simulator& ebosSimulator_;
|
||||
|
||||
std::vector<int> legacyCellPvtRegionIdx_;
|
||||
std::vector<double> legacyPoreVolume_;
|
||||
std::vector<double> legacyDepth_;
|
||||
typedef typename Solver::SolverParameters SolverParameters;
|
||||
|
||||
|
||||
305
opm/autodiff/StandardWell.hpp
Normal file
305
opm/autodiff/StandardWell.hpp
Normal file
@@ -0,0 +1,305 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2016 - 2017 IRIS AS.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_STANDARDWELL_HEADER_INCLUDED
|
||||
#define OPM_STANDARDWELL_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include <opm/autodiff/WellInterface.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
template<typename TypeTag>
|
||||
class StandardWell: public WellInterface<TypeTag>
|
||||
{
|
||||
|
||||
public:
|
||||
typedef WellInterface<TypeTag> Base;
|
||||
// TODO: some functions working with AD variables handles only with values (double) without
|
||||
// dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value.
|
||||
// And also, it can also be beneficial to make these functions hanle different types of AD variables.
|
||||
using typename Base::Simulator;
|
||||
using typename Base::WellState;
|
||||
using typename Base::IntensiveQuantities;
|
||||
using typename Base::FluidSystem;
|
||||
using typename Base::MaterialLaw;
|
||||
using typename Base::ModelParameters;
|
||||
using typename Base::BlackoilIndices;
|
||||
using typename Base::PolymerModule;
|
||||
|
||||
// the positions of the primary variables for StandardWell
|
||||
// there are three primary variables, the second and the third ones are F_w and F_g
|
||||
// the first one can be total rate (G_t) or bhp, based on the control
|
||||
enum WellVariablePositions {
|
||||
XvarWell = 0,
|
||||
WFrac = 1,
|
||||
GFrac = 2,
|
||||
SFrac = 3
|
||||
};
|
||||
|
||||
using typename Base::Scalar;
|
||||
using typename Base::ConvergenceReport;
|
||||
|
||||
using Base::numEq;
|
||||
|
||||
using Base::has_solvent;
|
||||
using Base::has_polymer;
|
||||
using Base::name;
|
||||
|
||||
// TODO: with flow_ebos,for a 2P deck, // TODO: for the 2p deck, numEq will be 3, a dummy phase is already added from the reservoir side.
|
||||
// it will cause problem here without processing the dummy phase.
|
||||
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq-1 : numEq; // number of wellEq is only numEq - 1 for polymer
|
||||
using typename Base::Mat;
|
||||
using typename Base::BVector;
|
||||
using typename Base::Eval;
|
||||
|
||||
// sparsity pattern for the matrices
|
||||
//[A C^T [x = [ res
|
||||
// B D ] x_well] res_well]
|
||||
|
||||
// the vector type for the res_well and x_well
|
||||
typedef Dune::FieldVector<Scalar, numWellEq> VectorBlockWellType;
|
||||
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
|
||||
|
||||
// the matrix type for the diagonal matrix D
|
||||
typedef Dune::FieldMatrix<Scalar, numWellEq, numWellEq > DiagMatrixBlockWellType;
|
||||
typedef Dune::BCRSMatrix <DiagMatrixBlockWellType> DiagMatWell;
|
||||
|
||||
// the matrix type for the non-diagonal matrix B and C^T
|
||||
typedef Dune::FieldMatrix<Scalar, numWellEq, numEq> OffDiagMatrixBlockWellType;
|
||||
typedef Dune::BCRSMatrix<OffDiagMatrixBlockWellType> OffDiagMatWell;
|
||||
|
||||
typedef DenseAd::Evaluation<double, /*size=*/numEq + numWellEq> EvalWell;
|
||||
|
||||
// TODO: should these go to WellInterface?
|
||||
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
|
||||
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
|
||||
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
|
||||
static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx;
|
||||
|
||||
|
||||
StandardWell(const Well* well, const int time_step, const Wells* wells);
|
||||
|
||||
virtual void init(const PhaseUsage* phase_usage_arg,
|
||||
const std::vector<bool>* active_arg,
|
||||
const std::vector<double>& depth_arg,
|
||||
const double gravity_arg,
|
||||
const int num_cells);
|
||||
|
||||
|
||||
virtual void initPrimaryVariablesEvaluation() const;
|
||||
|
||||
virtual void assembleWellEq(Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state,
|
||||
bool only_wells);
|
||||
|
||||
/// updating the well state based the control mode specified with current
|
||||
// TODO: later will check wheter we need current
|
||||
virtual void updateWellStateWithTarget(const int current,
|
||||
WellState& xw) const;
|
||||
|
||||
// TODO: this should go to the WellInterface, while updateWellStateWithTarget
|
||||
// will need touch different types of well_state, we will see.
|
||||
virtual void updateWellControl(WellState& xw,
|
||||
wellhelpers::WellSwitchingLogger& logger) const;
|
||||
|
||||
/// check whether the well equations get converged for this well
|
||||
virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator,
|
||||
const std::vector<double>& B_avg,
|
||||
const ModelParameters& param) const;
|
||||
|
||||
/// computing the accumulation term for later use in well mass equations
|
||||
virtual void computeAccumWell();
|
||||
|
||||
virtual void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw);
|
||||
|
||||
/// Ax = Ax - C D^-1 B x
|
||||
virtual void apply(const BVector& x, BVector& Ax) const;
|
||||
/// r = r - C D^-1 Rw
|
||||
virtual void apply(BVector& r) const;
|
||||
|
||||
/// using the solution x to recover the solution xw for wells and applying
|
||||
/// xw to update Well State
|
||||
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param,
|
||||
WellState& well_state) const;
|
||||
|
||||
/// computing the well potentials for group control
|
||||
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& well_potentials) const;
|
||||
|
||||
virtual void updatePrimaryVariables(const WellState& well_state) const;
|
||||
|
||||
protected:
|
||||
|
||||
// protected functions from the Base class
|
||||
using Base::getAllowCrossFlow;
|
||||
using Base::phaseUsage;
|
||||
using Base::active;
|
||||
using Base::flowToEbosPvIdx;
|
||||
using Base::flowPhaseToEbosPhaseIdx;
|
||||
using Base::flowPhaseToEbosCompIdx;
|
||||
using Base::numComponents;
|
||||
using Base::wsolvent;
|
||||
using Base::wpolymer;
|
||||
using Base::wellHasTHPConstraints;
|
||||
using Base::mostStrictBhpFromBhpLimits;
|
||||
|
||||
// protected member variables from the Base class
|
||||
using Base::vfp_properties_;
|
||||
using Base::gravity_;
|
||||
using Base::well_efficiency_factor_;
|
||||
using Base::phase_usage_;
|
||||
using Base::first_perf_;
|
||||
using Base::ref_depth_;
|
||||
using Base::perf_depth_;
|
||||
using Base::well_cells_;
|
||||
using Base::number_of_perforations_;
|
||||
using Base::number_of_phases_;
|
||||
using Base::saturation_table_number_;
|
||||
using Base::comp_frac_;
|
||||
using Base::well_index_;
|
||||
using Base::index_of_well_;
|
||||
using Base::well_controls_;
|
||||
using Base::well_type_;
|
||||
|
||||
using Base::perf_rep_radius_;
|
||||
using Base::perf_length_;
|
||||
using Base::bore_diameters_;
|
||||
|
||||
// densities of the fluid in each perforation
|
||||
std::vector<double> perf_densities_;
|
||||
// pressure drop between different perforations
|
||||
std::vector<double> perf_pressure_diffs_;
|
||||
|
||||
// residuals of the well equations
|
||||
BVectorWell resWell_;
|
||||
|
||||
// two off-diagonal matrices
|
||||
OffDiagMatWell duneB_;
|
||||
OffDiagMatWell duneC_;
|
||||
// diagonal matrix for the well
|
||||
DiagMatWell invDuneD_;
|
||||
|
||||
// several vector used in the matrix calculation
|
||||
mutable BVectorWell Bx_;
|
||||
mutable BVectorWell invDrw_;
|
||||
|
||||
// the values for the primary varibles
|
||||
// based on different solutioin strategies, the wells can have different primary variables
|
||||
mutable std::vector<double> primary_variables_;
|
||||
|
||||
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
|
||||
mutable std::vector<EvalWell> primary_variables_evaluation_;
|
||||
|
||||
// the saturations in the well bore under surface conditions at the beginning of the time step
|
||||
std::vector<double> F0_;
|
||||
|
||||
// TODO: this function should be moved to the base class.
|
||||
// while it faces chanllenges for MSWell later, since the calculation of bhp
|
||||
// based on THP is never implemented for MSWell yet.
|
||||
EvalWell getBhp() const;
|
||||
|
||||
// TODO: it is also possible to be moved to the base class.
|
||||
EvalWell getQs(const int comp_idx) const;
|
||||
|
||||
EvalWell wellVolumeFractionScaled(const int phase) const;
|
||||
|
||||
EvalWell wellVolumeFraction(const int phase) const;
|
||||
|
||||
EvalWell wellSurfaceVolumeFraction(const int phase) const;
|
||||
|
||||
EvalWell extendEval(const Eval& in) const;
|
||||
|
||||
bool crossFlowAllowed(const Simulator& ebosSimulator) const;
|
||||
|
||||
// xw = inv(D)*(rw - C*x)
|
||||
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
|
||||
|
||||
// updating the well_state based on well solution dwells
|
||||
void updateWellState(const BVectorWell& dwells,
|
||||
const BlackoilModelParameters& param,
|
||||
WellState& well_state) const;
|
||||
|
||||
// calculate the properties for the well connections
|
||||
// to calulate the pressure difference between well connections.
|
||||
void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw,
|
||||
std::vector<double>& b_perf,
|
||||
std::vector<double>& rsmax_perf,
|
||||
std::vector<double>& rvmax_perf,
|
||||
std::vector<double>& surf_dens_perf) const;
|
||||
|
||||
// TODO: not total sure whether it is a good idea to put this function here
|
||||
// the major reason to put here is to avoid the usage of Wells struct
|
||||
void computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& surf_dens_perf);
|
||||
|
||||
void computeConnectionPressureDelta();
|
||||
|
||||
void computeWellConnectionDensitesPressures(const WellState& xw,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& surf_dens_perf);
|
||||
|
||||
virtual void solveEqAndUpdateWellState(const ModelParameters& param,
|
||||
WellState& well_state);
|
||||
|
||||
// TODO: to check whether all the paramters are required
|
||||
void computePerfRate(const IntensiveQuantities& intQuants,
|
||||
const std::vector<EvalWell>& mob_perfcells_dense,
|
||||
const double Tw, const EvalWell& bhp, const double& cdp,
|
||||
const bool& allow_cf, std::vector<EvalWell>& cq_s) const;
|
||||
|
||||
// TODO: maybe we should provide a light version of computePerfRate, which does not include the
|
||||
// calculation of the derivatives
|
||||
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
||||
const EvalWell& bhp,
|
||||
std::vector<double>& well_flux) const;
|
||||
|
||||
std::vector<double> computeWellPotentialWithTHP(const Simulator& ebosSimulator,
|
||||
const double initial_bhp, // bhp from BHP constraints
|
||||
const std::vector<double>& initial_potential) const;
|
||||
|
||||
template <class ValueType>
|
||||
ValueType calculateBhpFromThp(const std::vector<ValueType>& rates, const int control_index) const;
|
||||
|
||||
double calculateThpFromBhp(const std::vector<double>& rates, const int control_index, const double bhp) const;
|
||||
|
||||
// get the mobility for specific perforation
|
||||
void getMobility(const Simulator& ebosSimulator,
|
||||
const int perf,
|
||||
std::vector<EvalWell>& mob) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#include "StandardWell_impl.hpp"
|
||||
|
||||
#endif // OPM_STANDARDWELL_HEADER_INCLUDED
|
||||
2060
opm/autodiff/StandardWell_impl.hpp
Normal file
2060
opm/autodiff/StandardWell_impl.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@@ -39,8 +39,6 @@
|
||||
#include <opm/core/wells/WellCollection.hpp>
|
||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||
#include <opm/autodiff/VFPProperties.hpp>
|
||||
#include <opm/autodiff/VFPInjProperties.hpp>
|
||||
#include <opm/autodiff/VFPProdProperties.hpp>
|
||||
#include <opm/autodiff/WellHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
||||
#include <opm/autodiff/WellDensitySegmented.hpp>
|
||||
@@ -49,27 +47,19 @@
|
||||
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
#include <opm/autodiff/WellInterface.hpp>
|
||||
#include <opm/autodiff/StandardWell.hpp>
|
||||
#include<dune/common/fmatrix.hh>
|
||||
#include<dune/istl/bcrsmatrix.hh>
|
||||
#include<dune/istl/matrixmatrix.hh>
|
||||
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
|
||||
#include <opm/simulators/WellSwitchingLogger.hpp>
|
||||
|
||||
#include <math.h>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
enum WellVariablePositions {
|
||||
XvarWell = 0,
|
||||
WFrac = 1,
|
||||
GFrac = 2,
|
||||
SFrac = 3
|
||||
};
|
||||
|
||||
|
||||
/// Class for handling the standard well model.
|
||||
template<typename TypeTag>
|
||||
class StandardWellsDense {
|
||||
@@ -82,26 +72,17 @@ enum WellVariablePositions {
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
|
||||
static const int numEq = BlackoilIndices::numEq;
|
||||
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq-1 : numEq; // //numEq; //number of wellEq is only numEq for polymer
|
||||
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
|
||||
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
|
||||
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
|
||||
static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx;
|
||||
|
||||
// TODO: where we should put these types, WellInterface or Well Model?
|
||||
// or there is some other strategy, like TypeTag
|
||||
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
typedef Dune::BlockVector<VectorBlockType> BVector;
|
||||
|
||||
typedef DenseAd::Evaluation<Scalar, /*size=*/numEq + numWellEq> EvalWell;
|
||||
typedef DenseAd::Evaluation<Scalar, /*size=*/numEq> Eval;
|
||||
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
|
||||
|
||||
// For the conversion between the surface volume rate and resrevoir voidage rate
|
||||
@@ -121,13 +102,143 @@ enum WellVariablePositions {
|
||||
const std::vector<bool>& active_arg,
|
||||
const double gravity_arg,
|
||||
const std::vector<double>& depth_arg,
|
||||
const std::vector<double>& pv_arg,
|
||||
long int global_nc,
|
||||
const Grid& grid);
|
||||
|
||||
void setVFPProperties(const VFPProperties* vfp_properties_arg);
|
||||
|
||||
/// The number of components in the model.
|
||||
|
||||
SimulatorReport assemble(Simulator& ebosSimulator,
|
||||
const int iterationIdx,
|
||||
const double dt,
|
||||
WellState& well_state);
|
||||
|
||||
// substract Binv(D)rw from r;
|
||||
void apply( BVector& r) const;
|
||||
|
||||
// subtract B*inv(D)*C * x from A*x
|
||||
void apply(const BVector& x, BVector& Ax) const;
|
||||
|
||||
// apply well model with scaling of alpha
|
||||
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
|
||||
|
||||
// using the solution x to recover the solution xw for wells and applying
|
||||
// xw to update Well State
|
||||
void recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const;
|
||||
|
||||
int numWells() const;
|
||||
|
||||
/// return true if wells are available in the reservoir
|
||||
bool wellsActive() const;
|
||||
|
||||
void setWellsActive(const bool wells_active);
|
||||
|
||||
/// return true if wells are available on this process
|
||||
bool localWellsActive() const;
|
||||
|
||||
bool getWellConvergence(Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg) const;
|
||||
|
||||
/// upate the dynamic lists related to economic limits
|
||||
void updateListEconLimited(const Schedule& schedule,
|
||||
const int current_step,
|
||||
const Wells* wells_struct,
|
||||
const WellState& well_state,
|
||||
DynamicListEconLimited& list_econ_limited) const;
|
||||
|
||||
WellCollection* wellCollection() const;
|
||||
|
||||
|
||||
protected:
|
||||
bool wells_active_;
|
||||
const Wells* wells_;
|
||||
const std::vector< const Well* > wells_ecl_;
|
||||
|
||||
// the number of wells in this process
|
||||
// trying not to use things from Wells struct
|
||||
// TODO: maybe a better name to emphasize it is local?
|
||||
const int number_of_wells_;
|
||||
|
||||
const int number_of_phases_;
|
||||
|
||||
using WellInterfacePtr = std::unique_ptr<WellInterface<TypeTag> >;
|
||||
// a vector of all the wells.
|
||||
// eventually, the wells_ above should be gone.
|
||||
// the name is just temporary
|
||||
// later, might make share_ptr const later.
|
||||
std::vector<WellInterfacePtr > well_container_;
|
||||
|
||||
using ConvergenceReport = typename WellInterface<TypeTag>::ConvergenceReport;
|
||||
|
||||
// create the well container
|
||||
static std::vector<WellInterfacePtr > createWellContainer(const Wells* wells,
|
||||
const std::vector<const Well*>& wells_ecl,
|
||||
const int time_step);
|
||||
|
||||
// Well collection is used to enforce the group control
|
||||
WellCollection* well_collection_;
|
||||
|
||||
ModelParameters param_;
|
||||
bool terminal_output_;
|
||||
bool has_solvent_;
|
||||
bool has_polymer_;
|
||||
int current_timeIdx_;
|
||||
|
||||
PhaseUsage phase_usage_;
|
||||
std::vector<bool> active_;
|
||||
const RateConverterType& rate_converter_;
|
||||
|
||||
// the number of the cells in the local grid
|
||||
int number_of_cells_;
|
||||
|
||||
long int global_nc_;
|
||||
|
||||
// used to better efficiency of calcuation
|
||||
mutable BVector scaleAddRes_;
|
||||
|
||||
void updateWellControls(WellState& xw) const;
|
||||
|
||||
void updateGroupControls(WellState& well_state) const;
|
||||
|
||||
// setting the well_solutions_ based on well_state.
|
||||
void updatePrimaryVariables(const WellState& well_state) const;
|
||||
|
||||
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const;
|
||||
|
||||
void computeRepRadiusPerfLength(const Grid& grid);
|
||||
|
||||
|
||||
void computeAverageFormationFactor(Simulator& ebosSimulator,
|
||||
std::vector<double>& B_avg) const;
|
||||
|
||||
void applyVREPGroupControl(WellState& well_state) const;
|
||||
|
||||
void computeWellVoidageRates(const WellState& well_state,
|
||||
std::vector<double>& well_voidage_rates,
|
||||
std::vector<double>& voidage_conversion_coeffs) const;
|
||||
|
||||
// Calculating well potentials for each well
|
||||
// TODO: getBhp() will be refactored to reduce the duplication of the code calculating the bhp from THP.
|
||||
void computeWellPotentials(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& well_potentials) const;
|
||||
|
||||
const std::vector<double>& wellPerfEfficiencyFactors() const;
|
||||
|
||||
void calculateEfficiencyFactors();
|
||||
|
||||
void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw) const;
|
||||
|
||||
SimulatorReport solveWellEq(Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state) const;
|
||||
|
||||
void computeAccumWells() const;
|
||||
|
||||
void initPrimaryVariablesEvaluation() const;
|
||||
|
||||
// The number of components in the model.
|
||||
int numComponents() const
|
||||
{
|
||||
if (numPhases() == 2) {
|
||||
@@ -141,286 +252,21 @@ enum WellVariablePositions {
|
||||
return numComp;
|
||||
}
|
||||
|
||||
int numPhases() const;
|
||||
|
||||
SimulatorReport assemble(Simulator& ebosSimulator,
|
||||
const int iterationIdx,
|
||||
const double dt,
|
||||
WellState& well_state);
|
||||
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
|
||||
|
||||
void resetWellControlFromState(const WellState& xw) const;
|
||||
|
||||
void assembleWellEq(Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state,
|
||||
bool only_wells);
|
||||
bool only_wells) const;
|
||||
|
||||
void
|
||||
getMobility(const Simulator& ebosSimulator,
|
||||
const int w,
|
||||
const int perf,
|
||||
const int cell_idx,
|
||||
std::vector<EvalWell>& mob) const;
|
||||
|
||||
bool allow_cross_flow(const int w, const Simulator& ebosSimulator) const;
|
||||
|
||||
void localInvert(Mat& istlA) const;
|
||||
|
||||
void print(Mat& istlA) const;
|
||||
|
||||
// substract Binv(D)rw from r;
|
||||
void apply( BVector& r) const;
|
||||
|
||||
// subtract B*inv(D)*C * x from A*x
|
||||
void apply(const BVector& x, BVector& Ax) const;
|
||||
|
||||
// apply well model with scaling of alpha
|
||||
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
|
||||
|
||||
// xw = inv(D)*(rw - C*x)
|
||||
void recoverVariable(const BVector& x, BVector& xw) const;
|
||||
|
||||
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
|
||||
|
||||
int flowToEbosPvIdx( const int flowPv ) const;
|
||||
|
||||
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
|
||||
|
||||
std::vector<double>
|
||||
extractPerfData(const std::vector<double>& in) const;
|
||||
|
||||
int numPhases() const;
|
||||
|
||||
int numCells() const;
|
||||
|
||||
void resetWellControlFromState(const WellState& xw) const;
|
||||
|
||||
const Wells& wells() const;
|
||||
|
||||
const Wells* wellsPointer() const;
|
||||
|
||||
/// return true if wells are available in the reservoir
|
||||
bool wellsActive() const;
|
||||
|
||||
void setWellsActive(const bool wells_active);
|
||||
|
||||
/// return true if wells are available on this process
|
||||
bool localWellsActive() const;
|
||||
|
||||
int numWellVars() const;
|
||||
|
||||
/// Density of each well perforation
|
||||
const std::vector<double>& wellPerforationDensities() const;
|
||||
|
||||
/// Diff to bhp for each well perforation.
|
||||
const std::vector<double>& wellPerforationPressureDiffs() const;
|
||||
|
||||
EvalWell extendEval(const Eval& in) const;
|
||||
|
||||
void setWellVariables(const WellState& xw);
|
||||
|
||||
void print(const EvalWell& in) const;
|
||||
|
||||
void computeAccumWells();
|
||||
|
||||
void computeWellFlux(const int& w, const double& Tw, const IntensiveQuantities& intQuants, const std::vector<EvalWell>& mob_perfcells_dense,
|
||||
const EvalWell& bhp, const double& cdp, const bool& allow_cf, std::vector<EvalWell>& cq_s) const;
|
||||
|
||||
SimulatorReport solveWellEq(Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state);
|
||||
|
||||
void printIf(const int c, const double x, const double y, const double eps, const std::string type) const;
|
||||
|
||||
std::vector<double> residual() const;
|
||||
|
||||
bool getWellConvergence(Simulator& ebosSimulator,
|
||||
const int iteration) const;
|
||||
|
||||
void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw);
|
||||
|
||||
void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw,
|
||||
std::vector<double>& b_perf,
|
||||
std::vector<double>& rsmax_perf,
|
||||
std::vector<double>& rvmax_perf,
|
||||
std::vector<double>& surf_dens_perf) const;
|
||||
|
||||
void updateWellState(const BVector& dwells,
|
||||
WellState& well_state) const;
|
||||
|
||||
|
||||
|
||||
void updateWellControls(WellState& xw) const;
|
||||
|
||||
/// upate the dynamic lists related to economic limits
|
||||
void updateListEconLimited(const Schedule& schedule,
|
||||
const int current_step,
|
||||
const Wells* wells_struct,
|
||||
const WellState& well_state,
|
||||
DynamicListEconLimited& list_econ_limited) const;
|
||||
|
||||
void computeWellConnectionDensitesPressures(const WellState& xw,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& surf_dens_perf,
|
||||
const std::vector<double>& depth_perf,
|
||||
const double grav);
|
||||
|
||||
|
||||
// Calculating well potentials for each well
|
||||
// TODO: getBhp() will be refactored to reduce the duplication of the code calculating the bhp from THP.
|
||||
void computeWellPotentials(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& well_potentials) const;
|
||||
|
||||
// TODO: some preparation work, mostly related to group control and RESV,
|
||||
// some preparation work, mostly related to group control and RESV,
|
||||
// at the beginning of each time step (Not report step)
|
||||
void prepareTimeStep(const Simulator& ebos_simulator,
|
||||
WellState& well_state);
|
||||
|
||||
WellCollection* wellCollection() const;
|
||||
|
||||
const std::vector<double>&
|
||||
wellPerfEfficiencyFactors() const;
|
||||
|
||||
void calculateEfficiencyFactors();
|
||||
|
||||
void computeWellVoidageRates(const WellState& well_state,
|
||||
std::vector<double>& well_voidage_rates,
|
||||
std::vector<double>& voidage_conversion_coeffs) const;
|
||||
|
||||
void applyVREPGroupControl(WellState& well_state) const;
|
||||
|
||||
protected:
|
||||
bool wells_active_;
|
||||
const Wells* wells_;
|
||||
const std::vector< const Well* > wells_ecl_;
|
||||
|
||||
// Well collection is used to enforce the group control
|
||||
WellCollection* well_collection_;
|
||||
|
||||
ModelParameters param_;
|
||||
bool terminal_output_;
|
||||
bool has_solvent_;
|
||||
bool has_polymer_;
|
||||
int current_timeIdx_;
|
||||
|
||||
PhaseUsage phase_usage_;
|
||||
std::vector<bool> active_;
|
||||
const VFPProperties* vfp_properties_;
|
||||
double gravity_;
|
||||
const RateConverterType& rate_converter_;
|
||||
|
||||
// The efficiency factor for each connection. It is specified based on wells and groups,
|
||||
// We calculate the factor for each connection for the computation of contributions to the mass balance equations.
|
||||
// By default, they should all be one.
|
||||
std::vector<double> well_perforation_efficiency_factors_;
|
||||
// the depth of the all the cell centers
|
||||
// for standard Wells, it the same with the perforation depth
|
||||
std::vector<double> cell_depths_;
|
||||
std::vector<double> pv_;
|
||||
|
||||
std::vector<double> well_perforation_densities_;
|
||||
std::vector<double> well_perforation_pressure_diffs_;
|
||||
|
||||
std::vector<double> wpolymer_;
|
||||
std::vector<double> wsolvent_;
|
||||
|
||||
std::vector<double> wells_rep_radius_;
|
||||
std::vector<double> wells_perf_length_;
|
||||
std::vector<double> wells_bore_diameter_;
|
||||
|
||||
std::vector<EvalWell> wellVariables_;
|
||||
std::vector<double> F0_;
|
||||
|
||||
Mat duneB_;
|
||||
Mat duneC_;
|
||||
Mat invDuneD_;
|
||||
|
||||
BVector resWell_;
|
||||
|
||||
long int global_nc_;
|
||||
|
||||
mutable BVector Cx_;
|
||||
mutable BVector invDrw_;
|
||||
mutable BVector scaleAddRes_;
|
||||
|
||||
double dbhpMaxRel() const {return param_.dbhp_max_rel_; }
|
||||
double dWellFractionMax() const {return param_.dwell_fraction_max_; }
|
||||
|
||||
// protected methods
|
||||
EvalWell getBhp(const int wellIdx) const;
|
||||
|
||||
EvalWell getQs(const int wellIdx, const int compIdx) const;
|
||||
|
||||
EvalWell wellVolumeFraction(const int wellIdx, const int compIdx) const;
|
||||
|
||||
EvalWell wellVolumeFractionScaled(const int wellIdx, const int compIdx) const;
|
||||
|
||||
// Q_p / (Q_w + Q_g + Q_o) for three phase cases.
|
||||
EvalWell wellSurfaceVolumeFraction(const int well_index, const int compIdx) const;
|
||||
|
||||
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state,
|
||||
const int well_number) const;
|
||||
|
||||
using WellMapType = typename WellState::WellMapType;
|
||||
using WellMapEntryType = typename WellState::mapentry_t;
|
||||
|
||||
// a tuple type for ratio limit check.
|
||||
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
|
||||
// values should not be used.
|
||||
// second value indicates whehter there is only one connection left.
|
||||
// third value indicates the indx of the worst-offending connection.
|
||||
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
|
||||
// the ratio of the actual value to the value of the violated limit.
|
||||
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
|
||||
|
||||
enum ConnectionIndex {
|
||||
INVALIDCONNECTION = -10000
|
||||
};
|
||||
|
||||
|
||||
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state,
|
||||
const WellMapEntryType& map_entry) const;
|
||||
|
||||
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state,
|
||||
const WellMapEntryType& map_entry) const;
|
||||
|
||||
void updateWellStateWithTarget(const WellControls* wc,
|
||||
const int current,
|
||||
const int well_index,
|
||||
WellState& xw) const;
|
||||
|
||||
bool wellHasTHPConstraints(const int well_index) const;
|
||||
|
||||
// TODO: maybe we should provide a light version of computeWellFlux, which does not include the
|
||||
// calculation of the derivatives
|
||||
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
||||
const EvalWell& bhp,
|
||||
const int well_index,
|
||||
std::vector<double>& well_flux) const;
|
||||
|
||||
double mostStrictBhpFromBhpLimits(const int well_index) const;
|
||||
|
||||
// TODO: maybe it should be improved to be calculate general rates for THP control later
|
||||
std::vector<double>
|
||||
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
|
||||
const int well_index,
|
||||
const double initial_bhp, // bhp from BHP constraints
|
||||
const std::vector<double>& initial_potential) const;
|
||||
|
||||
double wsolvent(const int well_index) const;
|
||||
|
||||
double wpolymer(const int well_index) const;
|
||||
|
||||
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const;
|
||||
|
||||
void computeRepRadiusPerfLength(const Grid& grid);
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -35,7 +35,7 @@ namespace Opm {
|
||||
namespace wellhelpers
|
||||
{
|
||||
|
||||
|
||||
|
||||
inline
|
||||
double rateToCompare(const std::vector<double>& well_phase_flow_rate,
|
||||
const int well,
|
||||
@@ -147,6 +147,15 @@ namespace Opm {
|
||||
return dp;
|
||||
}
|
||||
|
||||
inline
|
||||
double computeHydrostaticCorrection(const double well_ref_depth, const double vfp_ref_depth,
|
||||
const double rho, const double gravity) {
|
||||
const double dh = vfp_ref_depth - well_ref_depth;
|
||||
const double dp = rho * gravity * dh;
|
||||
|
||||
return dp;
|
||||
}
|
||||
|
||||
template <class Vector>
|
||||
inline
|
||||
Vector computeHydrostaticCorrection(const Wells& wells, const Vector vfp_ref_depth,
|
||||
|
||||
313
opm/autodiff/WellInterface.hpp
Normal file
313
opm/autodiff/WellInterface.hpp
Normal file
@@ -0,0 +1,313 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
|
||||
#define OPM_WELLINTERFACE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
|
||||
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/well_controls.h>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
|
||||
#include <opm/autodiff/VFPProperties.hpp>
|
||||
#include <opm/autodiff/VFPInjProperties.hpp>
|
||||
#include <opm/autodiff/VFPProdProperties.hpp>
|
||||
#include <opm/autodiff/WellHelpers.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
|
||||
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
||||
|
||||
#include <opm/simulators/WellSwitchingLogger.hpp>
|
||||
|
||||
#include<dune/common/fmatrix.hh>
|
||||
#include<dune/istl/bcrsmatrix.hh>
|
||||
#include<dune/istl/matrixmatrix.hh>
|
||||
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
class WellInterface
|
||||
{
|
||||
public:
|
||||
|
||||
using WellState = WellStateFullyImplicitBlackoilDense;
|
||||
|
||||
typedef BlackoilModelParameters ModelParameters;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
|
||||
static const int numEq = BlackoilIndices::numEq;
|
||||
typedef double Scalar;
|
||||
|
||||
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
typedef Dune::BlockVector<VectorBlockType> BVector;
|
||||
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
|
||||
|
||||
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
|
||||
|
||||
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
|
||||
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
|
||||
|
||||
/// Constructor
|
||||
WellInterface(const Well* well, const int time_step, const Wells* wells);
|
||||
|
||||
/// Virutal destructor
|
||||
virtual ~WellInterface() {}
|
||||
|
||||
/// Well name.
|
||||
const std::string& name() const;
|
||||
|
||||
/// Well type, INJECTOR or PRODUCER.
|
||||
WellType wellType() const;
|
||||
|
||||
/// Well controls
|
||||
WellControls* wellControls() const;
|
||||
|
||||
void setVFPProperties(const VFPProperties* vfp_properties_arg);
|
||||
|
||||
virtual void init(const PhaseUsage* phase_usage_arg,
|
||||
const std::vector<bool>* active_arg,
|
||||
const std::vector<double>& depth_arg,
|
||||
const double gravity_arg,
|
||||
const int num_cells);
|
||||
|
||||
virtual void initPrimaryVariablesEvaluation() const = 0;
|
||||
|
||||
/// a struct to collect information about the convergence checking
|
||||
struct ConvergenceReport {
|
||||
struct ProblemWell {
|
||||
std::string well_name;
|
||||
std::string phase_name;
|
||||
};
|
||||
bool converged = true;
|
||||
bool nan_residual_found = false;
|
||||
std::vector<ProblemWell> nan_residual_wells;
|
||||
// We consider Inf is large residual here
|
||||
bool too_large_residual_found = false;
|
||||
std::vector<ProblemWell> too_large_residual_wells;
|
||||
|
||||
ConvergenceReport& operator+=(const ConvergenceReport& rhs) {
|
||||
converged = converged && rhs.converged;
|
||||
nan_residual_found = nan_residual_found || rhs.nan_residual_found;
|
||||
if (rhs.nan_residual_found) {
|
||||
for (const ProblemWell& well : rhs.nan_residual_wells) {
|
||||
nan_residual_wells.push_back(well);
|
||||
}
|
||||
}
|
||||
too_large_residual_found = too_large_residual_found || rhs.too_large_residual_found;
|
||||
if (rhs.too_large_residual_found) {
|
||||
for (const ProblemWell& well : rhs.too_large_residual_wells) {
|
||||
too_large_residual_wells.push_back(well);
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator,
|
||||
const std::vector<double>& B_avg,
|
||||
const ModelParameters& param) const = 0;
|
||||
|
||||
virtual void solveEqAndUpdateWellState(const ModelParameters& param,
|
||||
WellState& well_state) = 0;
|
||||
|
||||
virtual void assembleWellEq(Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state,
|
||||
bool only_wells) = 0;
|
||||
|
||||
void updateListEconLimited(const WellState& well_state,
|
||||
DynamicListEconLimited& list_econ_limited) const;
|
||||
|
||||
void setWellEfficiencyFactor(const double efficiency_factor);
|
||||
|
||||
void computeRepRadiusPerfLength(const Grid& grid, const std::map<int, int>& cartesian_to_compressed);
|
||||
|
||||
/// using the solution x to recover the solution xw for wells and applying
|
||||
/// xw to update Well State
|
||||
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param,
|
||||
WellState& well_state) const = 0;
|
||||
|
||||
/// Ax = Ax - C D^-1 B x
|
||||
virtual void apply(const BVector& x, BVector& Ax) const = 0;
|
||||
|
||||
/// r = r - C D^-1 Rw
|
||||
virtual void apply(BVector& r) const = 0;
|
||||
|
||||
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& well_potentials) const = 0;
|
||||
|
||||
virtual void computeAccumWell() = 0;
|
||||
|
||||
// TODO: it should come with a different name
|
||||
// for MS well, the definition is different and should not use this name anymore
|
||||
virtual void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& xw) = 0;
|
||||
|
||||
virtual void updateWellStateWithTarget(const int current,
|
||||
WellState& xw) const = 0;
|
||||
|
||||
virtual void updateWellControl(WellState& xw,
|
||||
wellhelpers::WellSwitchingLogger& logger) const = 0;
|
||||
|
||||
virtual void updatePrimaryVariables(const WellState& well_state) const = 0;
|
||||
|
||||
protected:
|
||||
|
||||
// to indicate a invalid connection
|
||||
static const int INVALIDCONNECTION = -100000;
|
||||
|
||||
const Well* well_ecl_;
|
||||
|
||||
const int current_step_;
|
||||
|
||||
// the index of well in Wells struct
|
||||
int index_of_well_;
|
||||
|
||||
// well type
|
||||
// INJECTOR or PRODUCER
|
||||
enum WellType well_type_;
|
||||
|
||||
// number of phases
|
||||
int number_of_phases_;
|
||||
|
||||
// component fractions for each well
|
||||
// typically, it should apply to injection wells
|
||||
std::vector<double> comp_frac_;
|
||||
|
||||
// controls for this well
|
||||
// TODO: later will check whehter to let it stay with pointer
|
||||
struct WellControls* well_controls_;
|
||||
|
||||
// number of the perforations for this well
|
||||
int number_of_perforations_;
|
||||
|
||||
// record the index of the first perforation
|
||||
// TODO: it might not be needed if we refactor WellState to be a vector
|
||||
// of states of individual well.
|
||||
int first_perf_;
|
||||
|
||||
// well index for each perforation
|
||||
std::vector<double> well_index_;
|
||||
|
||||
// TODO: it might should go to StandardWell
|
||||
// depth for each perforation
|
||||
std::vector<double> perf_depth_;
|
||||
|
||||
// reference depth for the BHP
|
||||
double ref_depth_;
|
||||
|
||||
double well_efficiency_factor_;
|
||||
|
||||
// cell index for each well perforation
|
||||
std::vector<int> well_cells_;
|
||||
|
||||
// saturation table nubmer for each well perforation
|
||||
std::vector<int> saturation_table_number_;
|
||||
|
||||
// representative radius of the perforations, used in shear calculation
|
||||
std::vector<double> perf_rep_radius_;
|
||||
|
||||
// length of the perforations, use in shear calculation
|
||||
std::vector<double> perf_length_;
|
||||
|
||||
// well bore diameter
|
||||
std::vector<double> bore_diameters_;
|
||||
|
||||
const PhaseUsage* phase_usage_;
|
||||
|
||||
bool getAllowCrossFlow() const;
|
||||
|
||||
const std::vector<bool>* active_;
|
||||
|
||||
const VFPProperties* vfp_properties_;
|
||||
|
||||
double gravity_;
|
||||
|
||||
const std::vector<bool>& active() const;
|
||||
|
||||
const PhaseUsage& phaseUsage() const;
|
||||
|
||||
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
|
||||
|
||||
int flowToEbosPvIdx( const int flowPv ) const;
|
||||
|
||||
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
|
||||
|
||||
// TODO: it is dumplicated with StandardWellsDense
|
||||
int numComponents() const;
|
||||
|
||||
double wsolvent() const;
|
||||
|
||||
double wpolymer() const;
|
||||
|
||||
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const;
|
||||
|
||||
bool wellHasTHPConstraints() const;
|
||||
|
||||
// Component fractions for each phase for the well
|
||||
const std::vector<double>& compFrac() const;
|
||||
|
||||
double mostStrictBhpFromBhpLimits() const;
|
||||
|
||||
// a tuple type for ratio limit check.
|
||||
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
|
||||
// values should not be used.
|
||||
// second value indicates whehter there is only one connection left.
|
||||
// third value indicates the indx of the worst-offending connection.
|
||||
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
|
||||
// the ratio of the actual value to the value of the violated limit.
|
||||
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
|
||||
|
||||
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const;
|
||||
|
||||
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#include "WellInterface_impl.hpp"
|
||||
|
||||
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED
|
||||
768
opm/autodiff/WellInterface_impl.hpp
Normal file
768
opm/autodiff/WellInterface_impl.hpp
Normal file
@@ -0,0 +1,768 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
WellInterface<TypeTag>::
|
||||
WellInterface(const Well* well, const int time_step, const Wells* wells)
|
||||
: well_ecl_(well)
|
||||
, current_step_(time_step)
|
||||
{
|
||||
if (!well) {
|
||||
OPM_THROW(std::invalid_argument, "Null pointer of Well is used to construct WellInterface");
|
||||
}
|
||||
|
||||
if (time_step < 0) {
|
||||
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
|
||||
}
|
||||
|
||||
if (!wells) {
|
||||
OPM_THROW(std::invalid_argument, "Null pointer of Wells is used to construct WellInterface");
|
||||
}
|
||||
|
||||
const std::string& well_name = well->name();
|
||||
|
||||
// looking for the location of the well in the wells struct
|
||||
int index_well;
|
||||
for (index_well = 0; index_well < wells->number_of_wells; ++index_well) {
|
||||
if (well_name == std::string(wells->name[index_well])) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// should not enter the constructor if the well does not exist in the wells struct
|
||||
// here, just another assertion.
|
||||
assert(index_well != wells->number_of_wells);
|
||||
|
||||
index_of_well_ = index_well;
|
||||
well_type_ = wells->type[index_well];
|
||||
number_of_phases_ = wells->number_of_phases;
|
||||
|
||||
// copying the comp_frac
|
||||
{
|
||||
comp_frac_.resize(number_of_phases_);
|
||||
const int index_begin = index_well * number_of_phases_;
|
||||
std::copy(wells->comp_frac + index_begin,
|
||||
wells->comp_frac + index_begin + number_of_phases_, comp_frac_.begin() );
|
||||
}
|
||||
|
||||
well_controls_ = wells->ctrls[index_well];
|
||||
|
||||
ref_depth_ = wells->depth_ref[index_well];
|
||||
|
||||
// perforations related
|
||||
{
|
||||
const int perf_index_begin = wells->well_connpos[index_well];
|
||||
const int perf_index_end = wells->well_connpos[index_well + 1];
|
||||
number_of_perforations_ = perf_index_end - perf_index_begin;
|
||||
first_perf_ = perf_index_begin;
|
||||
|
||||
well_cells_.resize(number_of_perforations_);
|
||||
std::copy(wells->well_cells + perf_index_begin,
|
||||
wells->well_cells + perf_index_end,
|
||||
well_cells_.begin() );
|
||||
|
||||
well_index_.resize(number_of_perforations_);
|
||||
std::copy(wells->WI + perf_index_begin,
|
||||
wells->WI + perf_index_end,
|
||||
well_index_.begin() );
|
||||
|
||||
saturation_table_number_.resize(number_of_perforations_);
|
||||
std::copy(wells->sat_table_id + perf_index_begin,
|
||||
wells->sat_table_id + perf_index_end,
|
||||
saturation_table_number_.begin() );
|
||||
}
|
||||
|
||||
well_efficiency_factor_ = 1.0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
WellInterface<TypeTag>::
|
||||
init(const PhaseUsage* phase_usage_arg,
|
||||
const std::vector<bool>* active_arg,
|
||||
const std::vector<double>& /* depth_arg */,
|
||||
const double gravity_arg,
|
||||
const int /* num_cells */)
|
||||
{
|
||||
phase_usage_ = phase_usage_arg;
|
||||
active_ = active_arg;
|
||||
gravity_ = gravity_arg;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
WellInterface<TypeTag>::
|
||||
setVFPProperties(const VFPProperties* vfp_properties_arg)
|
||||
{
|
||||
vfp_properties_ = vfp_properties_arg;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
const std::string&
|
||||
WellInterface<TypeTag>::
|
||||
name() const
|
||||
{
|
||||
return well_ecl_->name();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
WellType
|
||||
WellInterface<TypeTag>::
|
||||
wellType() const
|
||||
{
|
||||
return well_type_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
WellControls*
|
||||
WellInterface<TypeTag>::
|
||||
wellControls() const
|
||||
{
|
||||
return well_controls_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
WellInterface<TypeTag>::
|
||||
getAllowCrossFlow() const
|
||||
{
|
||||
return well_ecl_->getAllowCrossFlow();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
const std::vector<bool>&
|
||||
WellInterface<TypeTag>::
|
||||
active() const
|
||||
{
|
||||
assert(active_);
|
||||
|
||||
return *active_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
WellInterface<TypeTag>::
|
||||
setWellEfficiencyFactor(const double efficiency_factor)
|
||||
{
|
||||
well_efficiency_factor_ = efficiency_factor;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
const PhaseUsage&
|
||||
WellInterface<TypeTag>::
|
||||
phaseUsage() const
|
||||
{
|
||||
assert(phase_usage_);
|
||||
|
||||
return *phase_usage_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
int
|
||||
WellInterface<TypeTag>::
|
||||
flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
||||
{
|
||||
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx};
|
||||
if (phaseIdx > 2 )
|
||||
return phaseIdx;
|
||||
return phaseToComp[ phaseIdx ];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
int
|
||||
WellInterface<TypeTag>::
|
||||
flowToEbosPvIdx( const int flowPv ) const
|
||||
{
|
||||
const int flowToEbos[ 3 ] = {
|
||||
BlackoilIndices::pressureSwitchIdx,
|
||||
BlackoilIndices::waterSaturationIdx,
|
||||
BlackoilIndices::compositionSwitchIdx
|
||||
};
|
||||
|
||||
if (flowPv > 2 )
|
||||
return flowPv;
|
||||
|
||||
return flowToEbos[ flowPv ];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
int
|
||||
WellInterface<TypeTag>::
|
||||
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
||||
{
|
||||
assert(phaseIdx < 3);
|
||||
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
|
||||
return flowToEbos[ phaseIdx ];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
int
|
||||
WellInterface<TypeTag>::
|
||||
numComponents() const
|
||||
{
|
||||
// TODO: how about two phase polymer
|
||||
if (number_of_phases_ == 2) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
int numComp = FluidSystem::numComponents;
|
||||
|
||||
if (has_solvent) {
|
||||
numComp++;
|
||||
}
|
||||
return numComp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
WellInterface<TypeTag>::
|
||||
wsolvent() const
|
||||
{
|
||||
if (!has_solvent) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
|
||||
if (injection.injectorType == WellInjector::GAS) {
|
||||
double solvent_fraction = well_ecl_->getSolventFraction(current_step_);
|
||||
return solvent_fraction;
|
||||
}
|
||||
|
||||
assert(false);
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
WellInterface<TypeTag>::
|
||||
wpolymer() const
|
||||
{
|
||||
if (!has_polymer) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_);
|
||||
WellPolymerProperties polymer = well_ecl_->getPolymerProperties(current_step_);
|
||||
|
||||
if (injection.injectorType == WellInjector::WATER) {
|
||||
const double polymer_injection_concentration = polymer.m_polymerConcentration;
|
||||
return polymer_injection_concentration;
|
||||
}
|
||||
|
||||
assert(false); // TODO: find a more logical way to handle this situation
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
WellInterface<TypeTag>::
|
||||
mostStrictBhpFromBhpLimits() const
|
||||
{
|
||||
double bhp;
|
||||
|
||||
// initial bhp value, making the value not usable
|
||||
switch( well_type_ ) {
|
||||
case INJECTOR:
|
||||
bhp = std::numeric_limits<double>::max();
|
||||
break;
|
||||
case PRODUCER:
|
||||
bhp = -std::numeric_limits<double>::max();
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
|
||||
}
|
||||
|
||||
// The number of the well controls/constraints
|
||||
const int nwc = well_controls_get_num(well_controls_);
|
||||
|
||||
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
||||
// finding a BHP constraint
|
||||
if (well_controls_iget_type(well_controls_, ctrl_index) == BHP) {
|
||||
// get the bhp constraint value, it should always be postive assummingly
|
||||
const double bhp_target = well_controls_iget_target(well_controls_, ctrl_index);
|
||||
|
||||
switch(well_type_) {
|
||||
case INJECTOR: // using the lower bhp contraint from Injectors
|
||||
if (bhp_target < bhp) {
|
||||
bhp = bhp_target;
|
||||
}
|
||||
break;
|
||||
case PRODUCER:
|
||||
if (bhp_target > bhp) {
|
||||
bhp = bhp_target;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name());
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
|
||||
return bhp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
WellInterface<TypeTag>::
|
||||
wellHasTHPConstraints() const
|
||||
{
|
||||
const int nwc = well_controls_get_num(well_controls_);
|
||||
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
||||
if (well_controls_iget_type(well_controls_, ctrl_index) == THP) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
WellInterface<TypeTag>::
|
||||
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const
|
||||
{
|
||||
const Opm::PhaseUsage& pu = *phase_usage_;
|
||||
const int np = number_of_phases_;
|
||||
|
||||
if (econ_production_limits.onMinOilRate()) {
|
||||
assert(active()[Oil]);
|
||||
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
||||
const double min_oil_rate = econ_production_limits.minOilRate();
|
||||
if (std::abs(oil_rate) < min_oil_rate) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMinGasRate() ) {
|
||||
assert(active()[Gas]);
|
||||
const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
|
||||
const double min_gas_rate = econ_production_limits.minGasRate();
|
||||
if (std::abs(gas_rate) < min_gas_rate) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMinLiquidRate() ) {
|
||||
assert(active()[Oil]);
|
||||
assert(active()[Water]);
|
||||
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
||||
const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
|
||||
const double liquid_rate = oil_rate + water_rate;
|
||||
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
||||
if (std::abs(liquid_rate) < min_liquid_rate) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMinReservoirFluidRate()) {
|
||||
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename WellInterface<TypeTag>::RatioCheckTuple
|
||||
WellInterface<TypeTag>::
|
||||
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const
|
||||
{
|
||||
bool water_cut_limit_violated = false;
|
||||
int worst_offending_connection = INVALIDCONNECTION;
|
||||
bool last_connection = false;
|
||||
double violation_extent = -1.0;
|
||||
|
||||
const int np = number_of_phases_;
|
||||
const Opm::PhaseUsage& pu = *phase_usage_;
|
||||
const int well_number = index_of_well_;
|
||||
|
||||
assert(active()[Oil]);
|
||||
assert(active()[Water]);
|
||||
|
||||
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
||||
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
||||
const double liquid_rate = oil_rate + water_rate;
|
||||
double water_cut;
|
||||
if (std::abs(liquid_rate) != 0.) {
|
||||
water_cut = water_rate / liquid_rate;
|
||||
} else {
|
||||
water_cut = 0.0;
|
||||
}
|
||||
|
||||
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
||||
if (water_cut > max_water_cut_limit) {
|
||||
water_cut_limit_violated = true;
|
||||
}
|
||||
|
||||
if (water_cut_limit_violated) {
|
||||
// need to handle the worst_offending_connection
|
||||
const int perf_start = first_perf_;
|
||||
const int perf_number = number_of_perforations_;
|
||||
|
||||
std::vector<double> water_cut_perf(perf_number);
|
||||
for (int perf = 0; perf < perf_number; ++perf) {
|
||||
const int i_perf = perf_start + perf;
|
||||
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
|
||||
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
|
||||
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
|
||||
if (std::abs(liquid_perf_rate) != 0.) {
|
||||
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
|
||||
} else {
|
||||
water_cut_perf[perf] = 0.;
|
||||
}
|
||||
}
|
||||
|
||||
last_connection = (perf_number == 1);
|
||||
if (last_connection) {
|
||||
worst_offending_connection = 0;
|
||||
violation_extent = water_cut_perf[0] / max_water_cut_limit;
|
||||
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
||||
}
|
||||
|
||||
double max_water_cut_perf = 0.;
|
||||
for (int perf = 0; perf < perf_number; ++perf) {
|
||||
if (water_cut_perf[perf] > max_water_cut_perf) {
|
||||
worst_offending_connection = perf;
|
||||
max_water_cut_perf = water_cut_perf[perf];
|
||||
}
|
||||
}
|
||||
|
||||
assert(max_water_cut_perf != 0.);
|
||||
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
|
||||
|
||||
violation_extent = max_water_cut_perf / max_water_cut_limit;
|
||||
}
|
||||
|
||||
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename WellInterface<TypeTag>::RatioCheckTuple
|
||||
WellInterface<TypeTag>::
|
||||
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
||||
const WellState& well_state) const
|
||||
{
|
||||
// TODO: not sure how to define the worst-offending connection when more than one
|
||||
// ratio related limit is violated.
|
||||
// The defintion used here is that we define the violation extent based on the
|
||||
// ratio between the value and the corresponding limit.
|
||||
// For each violated limit, we decide the worst-offending connection separately.
|
||||
// Among the worst-offending connections, we use the one has the biggest violation
|
||||
// extent.
|
||||
|
||||
bool any_limit_violated = false;
|
||||
bool last_connection = false;
|
||||
int worst_offending_connection = INVALIDCONNECTION;
|
||||
double violation_extent = -1.0;
|
||||
|
||||
if (econ_production_limits.onMaxWaterCut()) {
|
||||
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state);
|
||||
bool water_cut_violated = std::get<0>(water_cut_return);
|
||||
if (water_cut_violated) {
|
||||
any_limit_violated = true;
|
||||
const double violation_extent_water_cut = std::get<3>(water_cut_return);
|
||||
if (violation_extent_water_cut > violation_extent) {
|
||||
violation_extent = violation_extent_water_cut;
|
||||
worst_offending_connection = std::get<2>(water_cut_return);
|
||||
last_connection = std::get<1>(water_cut_return);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMaxGasOilRatio()) {
|
||||
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMaxWaterGasRatio()) {
|
||||
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
|
||||
}
|
||||
|
||||
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
||||
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
||||
}
|
||||
|
||||
if (any_limit_violated) {
|
||||
assert(worst_offending_connection >=0);
|
||||
assert(violation_extent > 1.);
|
||||
}
|
||||
|
||||
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
WellInterface<TypeTag>::
|
||||
updateListEconLimited(const WellState& well_state,
|
||||
DynamicListEconLimited& list_econ_limited) const
|
||||
{
|
||||
// economic limits only apply for production wells.
|
||||
if (wellType() != PRODUCER) {
|
||||
return;
|
||||
}
|
||||
|
||||
// flag to check if the mim oil/gas rate limit is violated
|
||||
bool rate_limit_violated = false;
|
||||
const WellEconProductionLimits& econ_production_limits = well_ecl_->getEconProductionLimits(current_step_);
|
||||
|
||||
// if no limit is effective here, then continue to the next well
|
||||
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string well_name = name();
|
||||
|
||||
// for the moment, we only handle rate limits, not handling potential limits
|
||||
// the potential limits should not be difficult to add
|
||||
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
|
||||
if (quantity_limit == WellEcon::POTN) {
|
||||
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
|
||||
+ std::string("All the limits will be evaluated based on RATE. ");
|
||||
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
|
||||
}
|
||||
|
||||
if (econ_production_limits.onAnyRateLimit()) {
|
||||
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state);
|
||||
}
|
||||
|
||||
if (rate_limit_violated) {
|
||||
if (econ_production_limits.endRun()) {
|
||||
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
|
||||
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
|
||||
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
||||
}
|
||||
|
||||
if (econ_production_limits.validFollowonWell()) {
|
||||
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
||||
}
|
||||
|
||||
if (well_ecl_->getAutomaticShutIn()) {
|
||||
list_econ_limited.addShutWell(well_name);
|
||||
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
|
||||
OpmLog::info(msg);
|
||||
} else {
|
||||
list_econ_limited.addStoppedWell(well_name);
|
||||
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
|
||||
OpmLog::info(msg);
|
||||
}
|
||||
// the well is closed, not need to check other limits
|
||||
return;
|
||||
}
|
||||
|
||||
// checking for ratio related limits, mostly all kinds of ratio.
|
||||
bool ratio_limits_violated = false;
|
||||
RatioCheckTuple ratio_check_return;
|
||||
|
||||
if (econ_production_limits.onAnyRatioLimit()) {
|
||||
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state);
|
||||
ratio_limits_violated = std::get<0>(ratio_check_return);
|
||||
}
|
||||
|
||||
if (ratio_limits_violated) {
|
||||
const bool last_connection = std::get<1>(ratio_check_return);
|
||||
const int worst_offending_connection = std::get<2>(ratio_check_return);
|
||||
|
||||
assert((worst_offending_connection >= 0) && (worst_offending_connection < number_of_perforations_));
|
||||
|
||||
const int cell_worst_offending_connection = well_cells_[worst_offending_connection];
|
||||
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
|
||||
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
|
||||
+ well_name + std::string(" will be closed due to economic limit");
|
||||
OpmLog::info(msg);
|
||||
|
||||
if (last_connection) {
|
||||
list_econ_limited.addShutWell(well_name);
|
||||
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
|
||||
OpmLog::info(msg2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
WellInterface<TypeTag>::
|
||||
computeRepRadiusPerfLength(const Grid& grid,
|
||||
const std::map<int, int>& cartesian_to_compressed)
|
||||
{
|
||||
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
|
||||
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
|
||||
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
|
||||
|
||||
const int nperf = number_of_perforations_;
|
||||
|
||||
perf_rep_radius_.clear();
|
||||
perf_length_.clear();
|
||||
bore_diameters_.clear();
|
||||
|
||||
perf_rep_radius_.resize(nperf);
|
||||
perf_length_.resize(nperf);
|
||||
bore_diameters_.resize(nperf);
|
||||
|
||||
// COMPDAT handling
|
||||
const auto& completionSet = well_ecl_->getCompletions(current_step_);
|
||||
for (size_t c=0; c<completionSet.size(); c++) {
|
||||
const auto& completion = completionSet.get(c);
|
||||
if (completion.getState() == WellCompletion::OPEN) {
|
||||
const int i = completion.getI();
|
||||
const int j = completion.getJ();
|
||||
const int k = completion.getK();
|
||||
|
||||
const int* cpgdim = cart_dims;
|
||||
const int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
|
||||
const std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
|
||||
if (cgit == cartesian_to_compressed.end()) {
|
||||
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
|
||||
<< k << " not found in grid (well = " << name() << ')');
|
||||
}
|
||||
const int cell = cgit->second;
|
||||
|
||||
{
|
||||
double radius = 0.5*completion.getDiameter();
|
||||
if (radius <= 0.0) {
|
||||
radius = 0.5*unit::feet;
|
||||
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
|
||||
}
|
||||
|
||||
const std::array<double, 3> cubical =
|
||||
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
|
||||
|
||||
WellCompletion::DirectionEnum direction = completion.getDirection();
|
||||
|
||||
double re; // area equivalent radius of the grid block
|
||||
double perf_length; // the length of the well perforation
|
||||
|
||||
switch (direction) {
|
||||
case Opm::WellCompletion::DirectionEnum::X:
|
||||
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
|
||||
perf_length = cubical[0];
|
||||
break;
|
||||
case Opm::WellCompletion::DirectionEnum::Y:
|
||||
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
|
||||
perf_length = cubical[1];
|
||||
break;
|
||||
case Opm::WellCompletion::DirectionEnum::Z:
|
||||
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
|
||||
perf_length = cubical[2];
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
|
||||
}
|
||||
|
||||
const double repR = std::sqrt(re * radius);
|
||||
perf_rep_radius_.push_back(repR);
|
||||
perf_length_.push_back(perf_length);
|
||||
bore_diameters_.push_back(2. * radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
@@ -108,101 +108,6 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// TODO: the reason to keep this is to avoid getting defaulted value BHP
|
||||
// some facilities needed from opm-parser or opm-core
|
||||
// It is a little tricky, since sometimes before applying group control, the only
|
||||
// available constraints in the well_controls is the defaulted BHP value, and it
|
||||
// is really not desirable to use this value to enter the Newton iterations.
|
||||
setWellSolutions(pu);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Set wellSolutions() based on the base class members.
|
||||
void setWellSolutions(const PhaseUsage& pu)
|
||||
{
|
||||
// Set nw and np, or return if no wells.
|
||||
if (wells_.get() == nullptr) {
|
||||
return;
|
||||
}
|
||||
const int nw = wells_->number_of_wells;
|
||||
if (nw == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
const int np = wells_->number_of_phases;
|
||||
const int numComp = pu.has_solvent? np+1:np;
|
||||
well_solutions_.clear();
|
||||
well_solutions_.resize(nw * numComp, 0.0);
|
||||
std::vector<double> g = {1.0,1.0,0.01};
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
WellControls* wc = wells_->ctrls[w];
|
||||
|
||||
// The current control in the well state overrides
|
||||
// the current control set in the Wells struct, which
|
||||
// is instead treated as a default.
|
||||
const int current = currentControls()[w];
|
||||
well_controls_set_current( wc, current);
|
||||
const WellType& well_type = wells_->type[w];
|
||||
|
||||
switch (well_controls_iget_type(wc, current)) {
|
||||
case THP: // Intentional fall-through
|
||||
case BHP:
|
||||
if (well_type == INJECTOR) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
well_solutions_[w] += wellRates()[np*w + p] * wells_->comp_frac[np*w + p];
|
||||
}
|
||||
} else {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
well_solutions_[w] += g[p] * wellRates()[np*w + p];
|
||||
}
|
||||
}
|
||||
break;
|
||||
case RESERVOIR_RATE: // Intentional fall-through
|
||||
case SURFACE_RATE:
|
||||
wellSolutions()[w] = bhp()[w];
|
||||
break;
|
||||
}
|
||||
|
||||
double total_rates = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
total_rates += g[p] * wellRates()[np*w + p];
|
||||
}
|
||||
|
||||
const int waterpos = pu.phase_pos[Water];
|
||||
const int gaspos = pu.phase_pos[Gas];
|
||||
|
||||
assert(np > 2 || (np == 2 && !pu.phase_used[Gas]));
|
||||
// assumes the gas fractions are stored after water fractions
|
||||
if(std::abs(total_rates) > 0) {
|
||||
if( pu.phase_used[Water] ) {
|
||||
wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + waterpos] / total_rates;
|
||||
}
|
||||
if( pu.phase_used[Gas] ) {
|
||||
wellSolutions()[2*nw + w] = g[Gas] * (wellRates()[np*w + gaspos] - solventWellRate(w)) / total_rates ;
|
||||
}
|
||||
if( pu.has_solvent) {
|
||||
wellSolutions()[3*nw + w] = g[Gas] * solventWellRate(w) / total_rates;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} else {
|
||||
if( pu.phase_used[Water] ) {
|
||||
wellSolutions()[nw + w] = wells_->comp_frac[np*w + waterpos];
|
||||
}
|
||||
if( pu.phase_used[Gas] ) {
|
||||
wellSolutions()[2*nw + w] = wells_->comp_frac[np*w + gaspos];
|
||||
}
|
||||
if (pu.has_solvent) {
|
||||
wellSolutions()[3*nw + w] = 0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -212,11 +117,6 @@ namespace Opm
|
||||
init(wells, state.pressure(), dummy_state, pu) ;
|
||||
}
|
||||
|
||||
|
||||
/// One rate per phase and well connection.
|
||||
std::vector<double>& wellSolutions() { return well_solutions_; }
|
||||
const std::vector<double>& wellSolutions() const { return well_solutions_; }
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
||||
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
||||
@@ -252,7 +152,6 @@ namespace Opm
|
||||
|
||||
|
||||
private:
|
||||
std::vector<double> well_solutions_;
|
||||
std::vector<double> perfRateSolvent_;
|
||||
|
||||
};
|
||||
|
||||
58
tests/TESTWELLMODEL.DATA
Normal file
58
tests/TESTWELLMODEL.DATA
Normal file
@@ -0,0 +1,58 @@
|
||||
RUNSPEC
|
||||
|
||||
DIMENS
|
||||
5 5 4 /
|
||||
OIL
|
||||
GAS
|
||||
WATER
|
||||
|
||||
GRID
|
||||
|
||||
DX
|
||||
100*100. /
|
||||
|
||||
DY
|
||||
100*50. /
|
||||
|
||||
DZ
|
||||
100*10. /
|
||||
|
||||
TOPS
|
||||
25*2500 /
|
||||
|
||||
PORO
|
||||
100*0.3 /
|
||||
|
||||
PERMX
|
||||
100*10. /
|
||||
|
||||
PERMY
|
||||
100*20. /
|
||||
|
||||
PERMZ
|
||||
100*1. /
|
||||
|
||||
SCHEDULE
|
||||
|
||||
WELSPECS
|
||||
'PROD1' 'P' 5 5 2525 'OIL' /
|
||||
'INJE1' 'I' 1 1 2505 'GAS' /
|
||||
/
|
||||
|
||||
COMPDAT
|
||||
'PROD1' 5 5 3 4 'OPEN' 2* 0.15 /
|
||||
'INJE1' 1 1 1 4 'OPEN' 2* 0.15 /
|
||||
/
|
||||
|
||||
WCONINJE
|
||||
'INJE1' 'WATER' 'OPEN' 'RATE' 1000. /
|
||||
/
|
||||
|
||||
WCONPROD
|
||||
'PROD1' 'OPEN' 'GRAT' 2* 50000. /
|
||||
/
|
||||
|
||||
TSTEP
|
||||
10 /
|
||||
|
||||
END
|
||||
@@ -83,15 +83,6 @@ struct SetupMSW {
|
||||
std::unique_ptr<GridInit> grid_init(new GridInit(ecl_state, porv));
|
||||
const Grid& grid = grid_init->grid();
|
||||
|
||||
// Create material law manager.
|
||||
std::vector<int> compressed_to_cartesianIdx;
|
||||
Opm::createGlobalCellArray(grid, compressed_to_cartesianIdx);
|
||||
|
||||
std::shared_ptr<MaterialLawManager> material_law_manager(new MaterialLawManager());
|
||||
material_law_manager->initFromDeck(deck, ecl_state, compressed_to_cartesianIdx);
|
||||
|
||||
std::unique_ptr<FluidProps> fluidprops(new FluidProps(deck, ecl_state, material_law_manager, grid));
|
||||
|
||||
const size_t current_timestep = 0;
|
||||
|
||||
// dummy_dynamic_list_econ_lmited
|
||||
@@ -115,7 +106,7 @@ struct SetupMSW {
|
||||
std::unordered_set<std::string>());
|
||||
|
||||
const Wells* wells = wells_manager.c_wells();
|
||||
const auto wells_ecl = ecl_state.getSchedule().getWells(current_timestep);
|
||||
const auto& wells_ecl = ecl_state.getSchedule().getWells(current_timestep);
|
||||
|
||||
ms_wells.reset(new Opm::MultisegmentWells(wells, &(wells_manager.wellCollection()), wells_ecl, current_timestep));
|
||||
};
|
||||
|
||||
194
tests/test_wellmodel.cpp
Normal file
194
tests/test_wellmodel.cpp
Normal file
@@ -0,0 +1,194 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#if HAVE_DYNAMIC_BOOST_TEST
|
||||
#define BOOST_TEST_DYN_LINK
|
||||
#endif
|
||||
|
||||
#define BOOST_TEST_MODULE WellModelTest
|
||||
|
||||
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
||||
#include <boost/test/unit_test.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
||||
|
||||
#include <opm/parser/eclipse/Parser/Parser.hpp>
|
||||
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
||||
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/parser/eclipse/Units/Units.hpp>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/wells/DynamicListEconLimited.hpp>
|
||||
|
||||
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
||||
#include <opm/autodiff/GridHelpers.hpp>
|
||||
#include <opm/autodiff/createGlobalCellArray.hpp>
|
||||
#include <opm/autodiff/GridInit.hpp>
|
||||
|
||||
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
|
||||
|
||||
#include <ebos/eclproblem.hh>
|
||||
#include <ewoms/common/start.hh>
|
||||
|
||||
#include <opm/autodiff/StandardWell.hpp>
|
||||
#include <opm/autodiff/StandardWellsDense.hpp>
|
||||
|
||||
// maybe should just include BlackoilModelEbos.hpp
|
||||
namespace Ewoms {
|
||||
namespace Properties {
|
||||
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
|
||||
}
|
||||
}
|
||||
|
||||
using StandardWell = Opm::StandardWell<TTAG(EclFlowProblem)>;
|
||||
|
||||
struct SetupTest {
|
||||
|
||||
using Grid = UnstructuredGrid;
|
||||
using GridInit = Opm::GridInit<Grid>;
|
||||
|
||||
SetupTest ()
|
||||
{
|
||||
Opm::ParseContext parse_context;
|
||||
Opm::Parser parser;
|
||||
auto deck = parser.parseFile("TESTWELLMODEL.DATA", parse_context);
|
||||
ecl_state = std::make_unique<const Opm::EclipseState>(deck , parse_context);
|
||||
|
||||
// Create grid.
|
||||
const std::vector<double>& porv =
|
||||
ecl_state->get3DProperties().getDoubleGridProperty("PORV").getData();
|
||||
|
||||
std::unique_ptr<GridInit> grid_init(new GridInit(*ecl_state, porv));
|
||||
const Grid& grid = grid_init->grid();
|
||||
|
||||
// Create material law manager.
|
||||
std::vector<int> compressed_to_cartesianIdx;
|
||||
Opm::createGlobalCellArray(grid, compressed_to_cartesianIdx);
|
||||
|
||||
// dummy_dynamic_list_econ_lmited
|
||||
const Opm::DynamicListEconLimited dummy_dynamic_list;
|
||||
|
||||
current_timestep = 0;
|
||||
|
||||
// Create wells.
|
||||
wells_manager = std::make_unique<const Opm::WellsManager> (*ecl_state,
|
||||
current_timestep,
|
||||
Opm::UgGridHelpers::numCells(grid),
|
||||
Opm::UgGridHelpers::globalCell(grid),
|
||||
Opm::UgGridHelpers::cartDims(grid),
|
||||
Opm::UgGridHelpers::dimensions(grid),
|
||||
Opm::UgGridHelpers::cell2Faces(grid),
|
||||
Opm::UgGridHelpers::beginFaceCentroids(grid),
|
||||
dummy_dynamic_list,
|
||||
false,
|
||||
std::unordered_set<std::string>());
|
||||
|
||||
};
|
||||
|
||||
std::unique_ptr<const Opm::WellsManager> wells_manager;
|
||||
std::unique_ptr<const Opm::EclipseState> ecl_state;
|
||||
int current_timestep;
|
||||
};
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
|
||||
SetupTest setup_test;
|
||||
const Wells* wells = setup_test.wells_manager->c_wells();
|
||||
const auto& wells_ecl = setup_test.ecl_state->getSchedule().getWells(setup_test.current_timestep);
|
||||
BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
|
||||
const Opm::Well* well = wells_ecl[1];
|
||||
BOOST_CHECK_THROW( StandardWell( well, -1, wells), std::invalid_argument);
|
||||
BOOST_CHECK_THROW( StandardWell( nullptr, 4, wells), std::invalid_argument);
|
||||
BOOST_CHECK_THROW( StandardWell( well, 4, nullptr), std::invalid_argument);
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(TestBehavoir) {
|
||||
SetupTest setup_test;
|
||||
const Wells* wells_struct = setup_test.wells_manager->c_wells();
|
||||
const auto& wells_ecl = setup_test.ecl_state->getSchedule().getWells(setup_test.current_timestep);
|
||||
const int current_timestep = setup_test.current_timestep;
|
||||
std::vector<std::unique_ptr<const StandardWell> > wells;
|
||||
|
||||
{
|
||||
const int nw = wells_struct ? (wells_struct->number_of_wells) : 0;
|
||||
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const std::string well_name(wells_struct->name[w]);
|
||||
|
||||
size_t index_well = 0;
|
||||
for (; index_well < wells_ecl.size(); ++index_well) {
|
||||
if (well_name == wells_ecl[index_well]->name()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// we should always be able to find the well in wells_ecl
|
||||
BOOST_CHECK(index_well != wells_ecl.size());
|
||||
|
||||
wells.emplace_back(new StandardWell(wells_ecl[index_well], current_timestep, wells_struct) );
|
||||
}
|
||||
}
|
||||
|
||||
// first well, it is a production well from the deck
|
||||
{
|
||||
const auto& well = wells[0];
|
||||
BOOST_CHECK_EQUAL(well->name(), "PROD1");
|
||||
BOOST_CHECK(well->wellType() == PRODUCER);
|
||||
BOOST_CHECK(well->numEq == 3);
|
||||
BOOST_CHECK(well->numWellEq == 3);
|
||||
const auto& wc = well->wellControls();
|
||||
const int ctrl_num = well_controls_get_num(wc);
|
||||
BOOST_CHECK(ctrl_num > 0);
|
||||
const auto& control = well_controls_get_current(wc);
|
||||
BOOST_CHECK(control >= 0);
|
||||
// GAS RATE CONTROL
|
||||
const auto& distr = well_controls_iget_distr(wc, control);
|
||||
BOOST_CHECK(distr[0] == 0.);
|
||||
BOOST_CHECK(distr[1] == 0.);
|
||||
BOOST_CHECK(distr[2] == 1.);
|
||||
}
|
||||
|
||||
// second well, it is the injection well from the deck
|
||||
{
|
||||
const auto& well = wells[1];
|
||||
BOOST_CHECK_EQUAL(well->name(), "INJE1");
|
||||
BOOST_CHECK(well->wellType() == INJECTOR);
|
||||
BOOST_CHECK(well->numEq == 3);
|
||||
BOOST_CHECK(well->numWellEq == 3);
|
||||
const auto& wc = well->wellControls();
|
||||
const int ctrl_num = well_controls_get_num(wc);
|
||||
BOOST_CHECK(ctrl_num > 0);
|
||||
const auto& control = well_controls_get_current(wc);
|
||||
BOOST_CHECK(control >= 0);
|
||||
// WATER RATE CONTROL
|
||||
const auto& distr = well_controls_iget_distr(wc, control);
|
||||
BOOST_CHECK(distr[0] == 1.);
|
||||
BOOST_CHECK(distr[1] == 0.);
|
||||
BOOST_CHECK(distr[2] == 0.);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user