mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
makding the StandardWell and WellInterface templated
with the template parameter TypeTag.
This commit is contained in:
393
opm/autodiff/StandardWell_impl.hpp
Normal file
393
opm/autodiff/StandardWell_impl.hpp
Normal file
@@ -0,0 +1,393 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
template<typename TypeTag>
|
||||
StandardWell<TypeTag>::
|
||||
StandardWell(const Well* well, const int time_step, const Wells* wells)
|
||||
: WellInterface<TypeTag>(well, time_step, wells)
|
||||
, perf_densities_(numberOfPerforations())
|
||||
, perf_pressure_diffs_(numberOfPerforations())
|
||||
, well_variables_(numWellEq) // the number of the primary variables
|
||||
{
|
||||
dune_B_.setBuildMode( Mat::row_wise );
|
||||
dune_C_.setBuildMode( Mat::row_wise );
|
||||
inv_dune_D_.setBuildMode( Mat::row_wise );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
const std::vector<double>&
|
||||
StandardWell<TypeTag>::
|
||||
perfDensities() const
|
||||
{
|
||||
return perf_densities_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
std::vector<double>&
|
||||
StandardWell<TypeTag>::
|
||||
perfDensities()
|
||||
{
|
||||
return perf_densities_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
const std::vector<double>&
|
||||
StandardWell<TypeTag>::
|
||||
perfPressureDiffs() const
|
||||
{
|
||||
return perf_pressure_diffs_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
std::vector<double>&
|
||||
StandardWell<TypeTag>::
|
||||
perfPressureDiffs()
|
||||
{
|
||||
return perf_pressure_diffs_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
StandardWell<TypeTag>::
|
||||
assembleWellEq(Simulator& ebos_simulator,
|
||||
const double dt,
|
||||
WellState& well_state,
|
||||
bool only_wells)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void StandardWell<TypeTag>::
|
||||
setWellVariables(const WellState& well_state)
|
||||
{
|
||||
const int np = numberOfPhases();
|
||||
const int nw = well_state.bhp().size();
|
||||
// TODO: it should be the number of primary variables
|
||||
// TODO: this is from the old version of StandardWellsDense, it is a coincidence, 3 phases and 3 primary variables
|
||||
// TODO: it needs to be careful.
|
||||
// TODO: the following code has to be rewritten later for correctness purpose.
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
well_variables_[phase] = 0.0;
|
||||
well_variables_[phase].setValue(well_state.wellSolutions()[indexOfWell() + nw * phase]);
|
||||
well_variables_[phase].setDerivative(numEq + phase, 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::EvalWell
|
||||
StandardWell<TypeTag>::
|
||||
getBhp() const
|
||||
{
|
||||
const WellControls* wc = wellControls();
|
||||
if (well_controls_get_current_type(wc) == BHP) {
|
||||
EvalWell bhp = 0.0;
|
||||
const double target_rate = well_controls_get_current_target(wc);
|
||||
bhp.setValue(target_rate);
|
||||
return bhp;
|
||||
} else if (well_controls_get_current_type(wc) == THP) {
|
||||
const int control = well_controls_get_current(wc);
|
||||
const double thp = well_controls_get_current_target(wc);
|
||||
const double alq = well_controls_iget_alq(wc, control);
|
||||
const int table_id = well_controls_iget_vfp(wc, control);
|
||||
EvalWell aqua = 0.0;
|
||||
EvalWell liquid = 0.0;
|
||||
EvalWell vapour = 0.0;
|
||||
EvalWell bhp = 0.0;
|
||||
double vfp_ref_depth = 0.0;
|
||||
|
||||
const Opm::PhaseUsage& pu = phaseUsage();
|
||||
|
||||
if (active()[ Water ]) {
|
||||
aqua = getQs(pu.phase_pos[ Water]);
|
||||
}
|
||||
if (active()[ Oil ]) {
|
||||
liquid = getQs(pu.phase_pos[ Oil ]);
|
||||
}
|
||||
if (active()[ Gas ]) {
|
||||
vapour = getQs(pu.phase_pos[ Gas ]);
|
||||
}
|
||||
if (wellType() == INJECTOR) {
|
||||
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
|
||||
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
||||
} else {
|
||||
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
|
||||
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
||||
}
|
||||
|
||||
// pick the density in the top layer
|
||||
const double rho = perf_densities_[0];
|
||||
// TODO: not sure whether it is always correct
|
||||
const double well_ref_depth = perfDepth()[0];
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
|
||||
bhp -= dp;
|
||||
return bhp;
|
||||
}
|
||||
|
||||
return well_variables_[XvarWell];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::EvalWell
|
||||
StandardWell<TypeTag>::
|
||||
getQs(const int phase) const
|
||||
{
|
||||
EvalWell qs = 0.0;
|
||||
|
||||
const WellControls* wc = wellControls();
|
||||
const int np = numberOfPhases();
|
||||
const double target_rate = well_controls_get_current_target(wc);
|
||||
|
||||
// TODO: we need to introduce numComponents() for StandardWell
|
||||
// assert(phase < numComponents());
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
// TODO: the formulation for the injectors decides it only work with single phase
|
||||
// surface rate injection control. Improvement will be required.
|
||||
if (wellType() == INJECTOR) {
|
||||
// TODO: adding the handling related to solvent
|
||||
/* if (has_solvent_ ) {
|
||||
// TODO: investigate whether the use of the comp_frac is justified.
|
||||
double comp_frac = 0.0;
|
||||
if (compIdx == solventCompIdx) { // solvent
|
||||
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
|
||||
} else if (compIdx == pu.phase_pos[ Gas ]) {
|
||||
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
|
||||
} else {
|
||||
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
|
||||
}
|
||||
if (comp_frac == 0.0) {
|
||||
return qs; //zero
|
||||
}
|
||||
|
||||
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
||||
return comp_frac * well_variables_[nw*XvarWell + wellIdx];
|
||||
}
|
||||
|
||||
qs.setValue(comp_frac * target_rate);
|
||||
return qs;
|
||||
} */
|
||||
const double comp_frac = compFrac()[phase];
|
||||
if (comp_frac == 0.0) {
|
||||
return qs;
|
||||
}
|
||||
|
||||
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
||||
return well_variables_[XvarWell];
|
||||
}
|
||||
qs.setValue(target_rate);
|
||||
return qs;
|
||||
}
|
||||
|
||||
// Producers
|
||||
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
|
||||
return well_variables_[XvarWell] * wellVolumeFractionScaled(phase);
|
||||
}
|
||||
|
||||
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
||||
// checking how many phases are included in the rate control
|
||||
// to decide wheter it is a single phase rate control or not
|
||||
const double* distr = well_controls_get_current_distr(wc);
|
||||
int num_phases_under_rate_control = 0;
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
if (distr[phase] > 0.0) {
|
||||
num_phases_under_rate_control += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// there should be at least one phase involved
|
||||
assert(num_phases_under_rate_control > 0);
|
||||
|
||||
// when it is a single phase rate limit
|
||||
if (num_phases_under_rate_control == 1) {
|
||||
|
||||
// looking for the phase under control
|
||||
int phase_under_control = -1;
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
if (distr[phase] > 0.0) {
|
||||
phase_under_control = phase;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
assert(phase_under_control >= 0);
|
||||
|
||||
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
|
||||
// TODO: handling solvent related later
|
||||
/* if (has_solvent_ && phase_under_control == Gas) {
|
||||
// for GRAT controlled wells solvent is included in the target
|
||||
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(solventCompIdx);
|
||||
} */
|
||||
|
||||
if (phase == phase_under_control) {
|
||||
/* if (has_solvent_ && phase_under_control == Gas) {
|
||||
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
|
||||
return qs;
|
||||
} */
|
||||
qs.setValue(target_rate);
|
||||
return qs;
|
||||
}
|
||||
|
||||
// TODO: not sure why the single phase under control will have near zero fraction
|
||||
const double eps = 1e-6;
|
||||
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
|
||||
return qs;
|
||||
}
|
||||
return (target_rate * wellVolumeFractionScaled(phase) / wellVolumeFractionScaledPhaseUnderControl);
|
||||
}
|
||||
|
||||
// when it is a combined two phase rate limit, such like LRAT
|
||||
// we neec to calculate the rate for the certain phase
|
||||
if (num_phases_under_rate_control == 2) {
|
||||
EvalWell combined_volume_fraction = 0.;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
if (distr[p] == 1.0) {
|
||||
combined_volume_fraction += wellVolumeFractionScaled(p);
|
||||
}
|
||||
}
|
||||
return (target_rate * wellVolumeFractionScaled(phase) / combined_volume_fraction);
|
||||
}
|
||||
|
||||
// TODO: three phase surface rate control is not tested yet
|
||||
if (num_phases_under_rate_control == 3) {
|
||||
return target_rate * wellSurfaceVolumeFraction(phase);
|
||||
}
|
||||
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
||||
// ReservoirRate
|
||||
return target_rate * wellVolumeFractionScaled(phase);
|
||||
} else {
|
||||
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
|
||||
}
|
||||
|
||||
// avoid warning of condition reaches end of non-void function
|
||||
return qs;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::EvalWell
|
||||
StandardWell<TypeTag>::
|
||||
wellVolumeFractionScaled(const int phase) const
|
||||
{
|
||||
// TODO: we should be able to set the g for the well based on the control type
|
||||
// instead of using explicit code for g all the times
|
||||
const WellControls* wc = wellControls();
|
||||
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
||||
const double* distr = well_controls_get_current_distr(wc);
|
||||
if (distr[phase] > 0.) {
|
||||
return wellVolumeFraction(phase) / distr[phase];
|
||||
} else {
|
||||
// TODO: not sure why return EvalWell(0.) causing problem here
|
||||
// Probably due to the wrong Jacobians.
|
||||
return wellVolumeFraction(phase);
|
||||
}
|
||||
}
|
||||
std::vector<double> g = {1,1,0.01};
|
||||
return (wellVolumeFraction(phase) / g[phase]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::EvalWell
|
||||
StandardWell<TypeTag>::
|
||||
wellVolumeFraction(const int phase) const
|
||||
{
|
||||
if (phase == Water) {
|
||||
return well_variables_[WFrac];
|
||||
}
|
||||
|
||||
if (phase == Gas) {
|
||||
return well_variables_[GFrac];
|
||||
}
|
||||
|
||||
// Oil fraction
|
||||
EvalWell well_fraction = 1.0;
|
||||
if (active()[Water]) {
|
||||
well_fraction -= well_variables_[WFrac];
|
||||
}
|
||||
|
||||
if (active()[Gas]) {
|
||||
well_fraction -= well_variables_[GFrac];
|
||||
}
|
||||
return well_fraction;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::EvalWell
|
||||
StandardWell<TypeTag>::
|
||||
wellSurfaceVolumeFraction(const int phase) const
|
||||
{
|
||||
EvalWell sum_volume_fraction_scaled = 0.;
|
||||
const int np = numberOfPhases();
|
||||
for (int p = 0; p < np; ++p) {
|
||||
sum_volume_fraction_scaled += wellVolumeFractionScaled(p);
|
||||
}
|
||||
|
||||
assert(sum_volume_fraction_scaled.value() != 0.);
|
||||
|
||||
return wellVolumeFractionScaled(phase) / sum_volume_fraction_scaled;
|
||||
}
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user