mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 02:30:18 -06:00
Add new interface to BlackoilPropsAdFromDeck
-- not finished --
This commit is contained in:
parent
6fcb629e6e
commit
1cf1e3383b
@ -32,6 +32,7 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/SimulatorCompressibleAd.cpp
|
||||
opm/autodiff/SimulatorIncompTwophaseAdfi.cpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.cpp
|
||||
opm/autodiff/BlackoilPropsAdFromDeck.cpp
|
||||
)
|
||||
|
||||
# originally generated with the command:
|
||||
@ -69,6 +70,7 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/AutoDiffHelpers.hpp
|
||||
opm/autodiff/AutoDiff.hpp
|
||||
opm/autodiff/BlackoilPropsAd.hpp
|
||||
opm/autodiff/BlackoilPropsAdFromDeck.hpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.hpp
|
||||
opm/autodiff/GeoProps.hpp
|
||||
opm/autodiff/ImpesTPFAAD.hpp
|
||||
|
636
opm/autodiff/BlackoilPropsAdFromDeck.cpp
Normal file
636
opm/autodiff/BlackoilPropsAdFromDeck.cpp
Normal file
@ -0,0 +1,636 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
// Making these typedef to make the code more readable.
|
||||
typedef BlackoilPropsAdFromDeck::ADB ADB;
|
||||
typedef BlackoilPropsAdFromDeck::V V;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
|
||||
|
||||
/// Constructor wrapping an opm-core black oil interface.
|
||||
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropertiesInterface& props)
|
||||
{
|
||||
if (init_rock){
|
||||
rock_.init(deck, grid);
|
||||
}
|
||||
|
||||
|
||||
|
||||
phase_usage_ = phaseUsageFromDeck(deck);
|
||||
// Set the properties.
|
||||
props_.resize(phase_usage_.num_phases);
|
||||
// Water PVT
|
||||
if (phase_usage_.phase_used[Aqua]) {
|
||||
if (deck.hasField("PVTW")) {
|
||||
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_));
|
||||
} else {
|
||||
// Eclipse 100 default.
|
||||
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise));
|
||||
}
|
||||
}
|
||||
// Oil PVT
|
||||
if (phase_usage_.phase_used[Liquid]) {
|
||||
if (deck.hasField("PVDO")) {
|
||||
if (samples > 0) {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
|
||||
} else {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
|
||||
}
|
||||
} else if (deck.hasField("PVTO")) {
|
||||
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
|
||||
} else if (deck.hasField("PVCDO")) {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_));
|
||||
} else {
|
||||
THROW("Input is missing PVDO or PVTO\n");
|
||||
}
|
||||
}
|
||||
// Gas PVT
|
||||
if (phase_usage_.phase_used[Vapour]) {
|
||||
if (deck.hasField("PVDG")) {
|
||||
if (samples > 0) {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
|
||||
} else {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
|
||||
}
|
||||
} else if (deck.hasField("PVTG")) {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
|
||||
} else {
|
||||
THROW("Input is missing PVDG or PVTG\n");
|
||||
}
|
||||
}
|
||||
|
||||
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, 200);
|
||||
|
||||
if (pvt_.numPhases() != satprops_->numPhases()) {
|
||||
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////
|
||||
// Rock interface //
|
||||
////////////////////////////
|
||||
|
||||
/// \return D, the number of spatial dimensions.
|
||||
int BlackoilPropsAdFromDeck::numDimensions() const
|
||||
{
|
||||
return rock_.numDimensions();
|
||||
}
|
||||
|
||||
/// \return N, the number of cells.
|
||||
int BlackoilPropsAdFromDeck::numCells() const
|
||||
{
|
||||
return rock_.numCells();
|
||||
}
|
||||
|
||||
/// \return Array of N porosity values.
|
||||
const double* BlackoilPropsAdFromDeck::porosity() const
|
||||
{
|
||||
return rock_.porosity();
|
||||
}
|
||||
|
||||
/// \return Array of ND^2 permeability values.
|
||||
/// The D^2 permeability values for a cell are organized as a matrix,
|
||||
/// which is symmetric (so ordering does not matter).
|
||||
const double* BlackoilPropsAdFromDeck::permeability() const
|
||||
{
|
||||
return rock_.permeability();
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// Fluid interface //
|
||||
////////////////////////////
|
||||
|
||||
|
||||
// ------ Density ------
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of 3 density values.
|
||||
const double* BlackoilPropsAdFromDeck::surfaceDensity() const
|
||||
{
|
||||
return densities_;
|
||||
}
|
||||
|
||||
|
||||
// ------ Viscosity ------
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAdFromDeck::muWat(const V& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
double rs[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs, mu,dmudp,dmudr);
|
||||
|
||||
return mu;
|
||||
}
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAdFromDeck::muOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(), mu,dmudp,dmudr);
|
||||
|
||||
return mu;
|
||||
}
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAdFromDeck::muGas(const V& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
double rs[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs.data(), mu,dmudp,dmudr);
|
||||
|
||||
return mu;
|
||||
}
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
double rs[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs, mu,dmudp,dmudr);
|
||||
|
||||
ADB::M dmu_diag = spdiag(dmudp);
|
||||
const int num_blocks = pw.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmu_diag * pw.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu, jacs);
|
||||
}
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs, mu,dmudp,dmudr);
|
||||
|
||||
ADB::M dmu_diag = spdiag(dmudp);
|
||||
ADB::M dmu_drs_diag = spdiag(dmudr);
|
||||
const int num_blocks = po.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmu_diag * po.derivative()[block] + dmu_drs_diag * rs.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu, jacs);
|
||||
}
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.value().size() == n);
|
||||
double mu[n];
|
||||
double dmudp[n];
|
||||
double dmudr[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs, mu,dmudp,dmudr);
|
||||
|
||||
ADB::M dmu_diag = spdiag(dmudp);
|
||||
ADB::M dmu_drs_diag = spdiag(dmudr);
|
||||
const int num_blocks = pg.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmu_diag * pg.derivative()[block] + dmu_drs_diag * rs.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu, jacs);
|
||||
}
|
||||
|
||||
|
||||
// ------ Formation volume factor (b) ------
|
||||
|
||||
// These methods all call the matrix() method, after which the variable
|
||||
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
|
||||
// a cell. For three-phase black oil:
|
||||
// A = [ bw 0 0
|
||||
// 0 bo 0
|
||||
// 0 b0*rs bw ]
|
||||
// Where b = B^{-1}.
|
||||
// Therefore, we extract the correct diagonal element, and are done.
|
||||
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
|
||||
// we also get the following derivative matrix:
|
||||
// A = [ dbw 0 0
|
||||
// 0 dbo 0
|
||||
// 0 db0*rs dbw ]
|
||||
// Again, we just extract a diagonal element.
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAdFromDeck::bWat(const V& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Water]) {
|
||||
THROW("Cannot call bWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
double rs[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Water]]->b(n, pw, rs, b,dbdp,dbdr);
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAdFromDeck::bOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call bOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Oil]]->b(n, po, rs, b,dbdp,dbdr);
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAdFromDeck::bGas(const V& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Gas]) {
|
||||
THROW("Cannot call bGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Gas]]->b(n, pg, rs, b,dbdp,dbdr);
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
double rs[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Water]]->b(n, pw, rs, b,dbdp,dbdr);
|
||||
|
||||
ADB::M db_diag = spdiag(dbdp);
|
||||
const int num_blocks = pw.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = db_diag * pw.derivative()[block];
|
||||
}
|
||||
return ADB::function(b, jacs);
|
||||
}
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Oil]]->b(n, po, rs, b,dbdp,dbdr);
|
||||
|
||||
ADB::M db_diag = spdiag(dbdp);
|
||||
ADB::M db_dr_diag = spdiag(dbdr);
|
||||
const int num_blocks = po.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = db_diag * po.derivative()[block] + db_dr_diag * rs.derivative()[block];
|
||||
}
|
||||
return ADB::function(b, jacs);
|
||||
}
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.size() == n);
|
||||
|
||||
double b[n];
|
||||
double dbdr[n];
|
||||
double dbdp[n];
|
||||
|
||||
props_[phase_usage_.phase_pos[Gas]]->b(n, pg, rs, b,dbdp,dbdr);
|
||||
|
||||
ADB::M db_diag = spdiag(dbdp);
|
||||
ADB::M db_dr_diag = spdiag(dbdr);
|
||||
const int num_blocks = pg.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = db_diag * pg.derivative()[block] + db_dr_diag * rs.derivative()[block];
|
||||
}
|
||||
return ADB::function(b, jacs);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAdFromDeck::rsMax(const V& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
double rbub[n];
|
||||
double drbubdp[n];
|
||||
props_[phase] ->rbub(n,po,rbub,drbubdp);
|
||||
return rbub;
|
||||
|
||||
}
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
double rbub[n];
|
||||
double drbubdp[n];
|
||||
props_[phase] ->rbub(n,po,rbub,drbubdp);
|
||||
ADB::M drbub_diag = spdiag(drbubdp);
|
||||
const int num_blocks = po.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = drbub_diag * po.derivative()[block];
|
||||
}
|
||||
return ADB::function(rbub, jacs);
|
||||
}
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> BlackoilPropsAdFromDeck::relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
const int n = cells.size();
|
||||
const int np = props_.numPhases();
|
||||
Block s_all(n, np);
|
||||
if (phase_usage_.phase_used[Water]) {
|
||||
ASSERT(sw.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Water]) = sw;
|
||||
}
|
||||
if (phase_usage_.phase_used[Oil]) {
|
||||
ASSERT(so.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Oil]) = so;
|
||||
}
|
||||
if (phase_usage_.phase_used[Gas]) {
|
||||
ASSERT(sg.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Gas]) = sg;
|
||||
}
|
||||
Block kr(n, np);
|
||||
props_.relperm(n, s_all.data(), cells.data(), kr.data(), 0);
|
||||
std::vector<V> relperms;
|
||||
relperms.reserve(3);
|
||||
for (int phase = 0; phase < 3; ++phase) {
|
||||
if (phase_usage_.phase_used[phase]) {
|
||||
relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase]));
|
||||
} else {
|
||||
relperms.emplace_back();
|
||||
}
|
||||
}
|
||||
return relperms;
|
||||
}
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<ADB> BlackoilPropsAdFromDeck::relperm(const ADB& sw,
|
||||
const ADB& so,
|
||||
const ADB& sg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
const int n = cells.size();
|
||||
const int np = props_.numPhases();
|
||||
Block s_all(n, np);
|
||||
if (phase_usage_.phase_used[Water]) {
|
||||
ASSERT(sw.value().size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Water]) = sw.value();
|
||||
}
|
||||
if (phase_usage_.phase_used[Oil]) {
|
||||
ASSERT(so.value().size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Oil]) = so.value();
|
||||
} else {
|
||||
THROW("BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
|
||||
}
|
||||
if (phase_usage_.phase_used[Gas]) {
|
||||
ASSERT(sg.value().size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Gas]) = sg.value();
|
||||
}
|
||||
Block kr(n, np);
|
||||
Block dkr(n, np*np);
|
||||
props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
|
||||
const int num_blocks = so.numBlocks();
|
||||
std::vector<ADB> relperms;
|
||||
relperms.reserve(3);
|
||||
typedef const ADB* ADBPtr;
|
||||
ADBPtr s[3] = { &sw, &so, &sg };
|
||||
for (int phase1 = 0; phase1 < 3; ++phase1) {
|
||||
if (phase_usage_.phase_used[phase1]) {
|
||||
const int phase1_pos = phase_usage_.phase_pos[phase1];
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
|
||||
}
|
||||
for (int phase2 = 0; phase2 < 3; ++phase2) {
|
||||
if (!phase_usage_.phase_used[phase2]) {
|
||||
continue;
|
||||
}
|
||||
const int phase2_pos = phase_usage_.phase_pos[phase2];
|
||||
// Assemble dkr1/ds2.
|
||||
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
|
||||
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
|
||||
}
|
||||
}
|
||||
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
|
||||
} else {
|
||||
relperms.emplace_back(ADB::null());
|
||||
}
|
||||
}
|
||||
return relperms;
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
246
opm/autodiff/BlackoilPropsAdFromDeck.hpp
Normal file
246
opm/autodiff/BlackoilPropsAdFromDeck.hpp
Normal file
@ -0,0 +1,246 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
||||
#define OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
||||
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/props/rock/RockFromDeck.hpp>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// class BlackoilPropertiesInterface;
|
||||
|
||||
/// This class is intended to present a fluid interface for
|
||||
/// three-phase black-oil that is easy to use with the AD-using
|
||||
/// simulators.
|
||||
///
|
||||
/// Most methods are available in two overloaded versions, one
|
||||
/// taking a constant vector and returning the same, and one
|
||||
/// taking an AD type and returning the same. Derivatives are not
|
||||
/// returned separately by any method, only implicitly with the AD
|
||||
/// version of the methods.
|
||||
class BlackoilPropsAdFromDeck : public BlackoilPropsAdInterface
|
||||
{
|
||||
public:
|
||||
/// Constructor wrapping an opm-core black oil interface.
|
||||
BlackoilPropsAdFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid, bool init_rock=true );
|
||||
|
||||
////////////////////////////
|
||||
// Rock interface //
|
||||
////////////////////////////
|
||||
|
||||
/// \return D, the number of spatial dimensions.
|
||||
int numDimensions() const;
|
||||
|
||||
/// \return N, the number of cells.
|
||||
int numCells() const;
|
||||
|
||||
/// \return Array of N porosity values.
|
||||
const double* porosity() const;
|
||||
|
||||
/// \return Array of ND^2 permeability values.
|
||||
/// The D^2 permeability values for a cell are organized as a matrix,
|
||||
/// which is symmetric (so ordering does not matter).
|
||||
const double* permeability() const;
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// Fluid interface //
|
||||
////////////////////////////
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef std::vector<int> Cells;
|
||||
|
||||
|
||||
// ------ Canonical named indices for each phase ------
|
||||
|
||||
/// Canonical named indices for each phase.
|
||||
enum PhaseIndex { Water = 0, Oil = 1, Gas = 2 };
|
||||
|
||||
|
||||
// ------ Density ------
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of 3 density values.
|
||||
const double* surfaceDensity() const;
|
||||
|
||||
|
||||
// ------ Viscosity ------
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V muWat(const V& pw,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V muOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V muGas(const V& pg,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB muWat(const ADB& pw,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB muOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB muGas(const ADB& pg,
|
||||
const Cells& cells) const;
|
||||
|
||||
|
||||
// ------ Formation volume factor (b) ------
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V bWat(const V& pw,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V bOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V bGas(const V& pg,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB bWat(const ADB& pw,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB bOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB bGas(const ADB& pg,
|
||||
const Cells& cells) const;
|
||||
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
#if 0
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V rsMax(const V& po,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
ADB rsMax(const ADB& po,
|
||||
const Cells& cells) const;
|
||||
#endif
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<ADB> relperm(const ADB& sw,
|
||||
const ADB& so,
|
||||
const ADB& sg,
|
||||
const Cells& cells) const;
|
||||
|
||||
private:
|
||||
RockFromDeck rock_;
|
||||
boost::scoped_ptr<SaturationPropsInterface> satprops_;
|
||||
PhaseUsage phase_usage_;
|
||||
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
|
||||
double densities_[MaxNumPhases];
|
||||
|
||||
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user