Add new interface to BlackoilPropsAdFromDeck

-- not finished --
This commit is contained in:
Tor Harald Sandve 2013-05-27 14:55:32 +02:00
parent 6fcb629e6e
commit 1cf1e3383b
3 changed files with 884 additions and 0 deletions

View File

@ -32,6 +32,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/autodiff/SimulatorCompressibleAd.cpp
opm/autodiff/SimulatorIncompTwophaseAdfi.cpp
opm/autodiff/TransportSolverTwophaseAd.cpp
opm/autodiff/BlackoilPropsAdFromDeck.cpp
)
# originally generated with the command:
@ -69,6 +70,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/autodiff/AutoDiffHelpers.hpp
opm/autodiff/AutoDiff.hpp
opm/autodiff/BlackoilPropsAd.hpp
opm/autodiff/BlackoilPropsAdFromDeck.hpp
opm/autodiff/BlackoilPropsAdInterface.hpp
opm/autodiff/GeoProps.hpp
opm/autodiff/ImpesTPFAAD.hpp

View File

@ -0,0 +1,636 @@
/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
namespace Opm
{
// Making these typedef to make the code more readable.
typedef BlackoilPropsAdFromDeck::ADB ADB;
typedef BlackoilPropsAdFromDeck::V V;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropertiesInterface& props)
{
if (init_rock){
rock_.init(deck, grid);
}
phase_usage_ = phaseUsageFromDeck(deck);
// Set the properties.
props_.resize(phase_usage_.num_phases);
// Water PVT
if (phase_usage_.phase_used[Aqua]) {
if (deck.hasField("PVTW")) {
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_));
} else {
// Eclipse 100 default.
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise));
}
}
// Oil PVT
if (phase_usage_.phase_used[Liquid]) {
if (deck.hasField("PVDO")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
} else {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
}
} else if (deck.hasField("PVTO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
} else if (deck.hasField("PVCDO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_));
} else {
THROW("Input is missing PVDO or PVTO\n");
}
}
// Gas PVT
if (phase_usage_.phase_used[Vapour]) {
if (deck.hasField("PVDG")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
} else {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
}
} else if (deck.hasField("PVTG")) {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
} else {
THROW("Input is missing PVDG or PVTG\n");
}
}
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int BlackoilPropsAdFromDeck::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropsAdFromDeck::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropsAdFromDeck::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropsAdFromDeck::permeability() const
{
return rock_.permeability();
}
////////////////////////////
// Fluid interface //
////////////////////////////
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* BlackoilPropsAdFromDeck::surfaceDensity() const
{
return densities_;
}
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muWat(const V& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
double rs[n];
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs, mu,dmudp,dmudr);
return mu;
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muOil(const V& po,
const V& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(), mu,dmudp,dmudr);
return mu;
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muGas(const V& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
double rs[n];
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs.data(), mu,dmudp,dmudr);
return mu;
}
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
double rs[n];
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs, mu,dmudp,dmudr);
ADB::M dmu_diag = spdiag(dmudp);
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmu_diag * pw.derivative()[block];
}
return ADB::function(mu, jacs);
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
const ADB& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs, mu,dmudp,dmudr);
ADB::M dmu_diag = spdiag(dmudp);
ADB::M dmu_drs_diag = spdiag(dmudr);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmu_diag * po.derivative()[block] + dmu_drs_diag * rs.derivative()[block];
}
return ADB::function(mu, jacs);
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.value().size() == n);
double mu[n];
double dmudp[n];
double dmudr[n];
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs, mu,dmudp,dmudr);
ADB::M dmu_diag = spdiag(dmudp);
ADB::M dmu_drs_diag = spdiag(dmudr);
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmu_diag * pg.derivative()[block] + dmu_drs_diag * rs.derivative()[block];
}
return ADB::function(mu, jacs);
}
// ------ Formation volume factor (b) ------
// These methods all call the matrix() method, after which the variable
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
// a cell. For three-phase black oil:
// A = [ bw 0 0
// 0 bo 0
// 0 b0*rs bw ]
// Where b = B^{-1}.
// Therefore, we extract the correct diagonal element, and are done.
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
// we also get the following derivative matrix:
// A = [ dbw 0 0
// 0 dbo 0
// 0 db0*rs dbw ]
// Again, we just extract a diagonal element.
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bWat(const V& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call bWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
double rs[n];
props_[phase_usage_.phase_pos[Water]]->b(n, pw, rs, b,dbdp,dbdr);
return b;
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bOil(const V& po,
const V& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call bOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
props_[phase_usage_.phase_pos[Oil]]->b(n, po, rs, b,dbdp,dbdr);
return b;
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bGas(const V& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call bGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
props_[phase_usage_.phase_pos[Gas]]->b(n, pg, rs, b,dbdp,dbdr);
return b;
}
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
double rs[n];
props_[phase_usage_.phase_pos[Water]]->b(n, pw, rs, b,dbdp,dbdr);
ADB::M db_diag = spdiag(dbdp);
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = db_diag * pw.derivative()[block];
}
return ADB::function(b, jacs);
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
const ADB& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
props_[phase_usage_.phase_pos[Oil]]->b(n, po, rs, b,dbdp,dbdr);
ADB::M db_diag = spdiag(dbdp);
ADB::M db_dr_diag = spdiag(dbdr);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = db_diag * po.derivative()[block] + db_dr_diag * rs.derivative()[block];
}
return ADB::function(b, jacs);
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.size() == n);
double b[n];
double dbdr[n];
double dbdp[n];
props_[phase_usage_.phase_pos[Gas]]->b(n, pg, rs, b,dbdp,dbdr);
ADB::M db_diag = spdiag(dbdp);
ADB::M db_dr_diag = spdiag(dbdr);
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = db_diag * pg.derivative()[block] + db_dr_diag * rs.derivative()[block];
}
return ADB::function(b, jacs);
}
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V BlackoilPropsAdFromDeck::rsMax(const V& po,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
double rbub[n];
double drbubdp[n];
props_[phase] ->rbub(n,po,rbub,drbubdp);
return rbub;
}
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
double rbub[n];
double drbubdp[n];
props_[phase] ->rbub(n,po,rbub,drbubdp);
ADB::M drbub_diag = spdiag(drbubdp);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = drbub_diag * po.derivative()[block];
}
return ADB::function(rbub, jacs);
}
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<V> BlackoilPropsAdFromDeck::relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = props_.numPhases();
Block s_all(n, np);
if (phase_usage_.phase_used[Water]) {
ASSERT(sw.size() == n);
s_all.col(phase_usage_.phase_pos[Water]) = sw;
}
if (phase_usage_.phase_used[Oil]) {
ASSERT(so.size() == n);
s_all.col(phase_usage_.phase_pos[Oil]) = so;
}
if (phase_usage_.phase_used[Gas]) {
ASSERT(sg.size() == n);
s_all.col(phase_usage_.phase_pos[Gas]) = sg;
}
Block kr(n, np);
props_.relperm(n, s_all.data(), cells.data(), kr.data(), 0);
std::vector<V> relperms;
relperms.reserve(3);
for (int phase = 0; phase < 3; ++phase) {
if (phase_usage_.phase_used[phase]) {
relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase]));
} else {
relperms.emplace_back();
}
}
return relperms;
}
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<ADB> BlackoilPropsAdFromDeck::relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = props_.numPhases();
Block s_all(n, np);
if (phase_usage_.phase_used[Water]) {
ASSERT(sw.value().size() == n);
s_all.col(phase_usage_.phase_pos[Water]) = sw.value();
}
if (phase_usage_.phase_used[Oil]) {
ASSERT(so.value().size() == n);
s_all.col(phase_usage_.phase_pos[Oil]) = so.value();
} else {
THROW("BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
}
if (phase_usage_.phase_used[Gas]) {
ASSERT(sg.value().size() == n);
s_all.col(phase_usage_.phase_pos[Gas]) = sg.value();
}
Block kr(n, np);
Block dkr(n, np*np);
props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
const int num_blocks = so.numBlocks();
std::vector<ADB> relperms;
relperms.reserve(3);
typedef const ADB* ADBPtr;
ADBPtr s[3] = { &sw, &so, &sg };
for (int phase1 = 0; phase1 < 3; ++phase1) {
if (phase_usage_.phase_used[phase1]) {
const int phase1_pos = phase_usage_.phase_pos[phase1];
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
}
for (int phase2 = 0; phase2 < 3; ++phase2) {
if (!phase_usage_.phase_used[phase2]) {
continue;
}
const int phase2_pos = phase_usage_.phase_pos[phase2];
// Assemble dkr1/ds2.
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
for (int block = 0; block < num_blocks; ++block) {
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
}
}
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
} else {
relperms.emplace_back(ADB::null());
}
}
return relperms;
}
} // namespace Opm

View File

@ -0,0 +1,246 @@
/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILPROPSAD_HEADER_INCLUDED
#define OPM_BLACKOILPROPSAD_HEADER_INCLUDED
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/rock/RockFromDeck.hpp>
namespace Opm
{
/// class BlackoilPropertiesInterface;
/// This class is intended to present a fluid interface for
/// three-phase black-oil that is easy to use with the AD-using
/// simulators.
///
/// Most methods are available in two overloaded versions, one
/// taking a constant vector and returning the same, and one
/// taking an AD type and returning the same. Derivatives are not
/// returned separately by any method, only implicitly with the AD
/// version of the methods.
class BlackoilPropsAdFromDeck : public BlackoilPropsAdInterface
{
public:
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid, bool init_rock=true );
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int numDimensions() const;
/// \return N, the number of cells.
int numCells() const;
/// \return Array of N porosity values.
const double* porosity() const;
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* permeability() const;
////////////////////////////
// Fluid interface //
////////////////////////////
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef std::vector<int> Cells;
// ------ Canonical named indices for each phase ------
/// Canonical named indices for each phase.
enum PhaseIndex { Water = 0, Oil = 1, Gas = 2 };
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* surfaceDensity() const;
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muWat(const V& pw,
const Cells& cells) const;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muOil(const V& po,
const V& rs,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V muGas(const V& pg,
const Cells& cells) const;
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muWat(const ADB& pw,
const Cells& cells) const;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muOil(const ADB& po,
const ADB& rs,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muGas(const ADB& pg,
const Cells& cells) const;
// ------ Formation volume factor (b) ------
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bWat(const V& pw,
const Cells& cells) const;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bOil(const V& po,
const V& rs,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V bGas(const V& pg,
const Cells& cells) const;
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bWat(const ADB& pw,
const Cells& cells) const;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bOil(const ADB& po,
const ADB& rs,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bGas(const ADB& pg,
const Cells& cells) const;
// ------ Rs bubble point curve ------
#if 0
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V rsMax(const V& po,
const Cells& cells) const;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB rsMax(const ADB& po,
const Cells& cells) const;
#endif
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<V> relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const;
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<ADB> relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const;
private:
RockFromDeck rock_;
boost::scoped_ptr<SaturationPropsInterface> satprops_;
PhaseUsage phase_usage_;
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
double densities_[MaxNumPhases];
};
} // namespace Opm
#endif // OPM_BLACKOILPROPSAD_HEADER_INCLUDED