mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
add adsorption term for polymer equation.
rewrite some function for simplify.
This commit is contained in:
Binary file not shown.
@@ -258,115 +258,117 @@ typedef Eigen::Array<double,
|
||||
const std::vector<ADB> kr = computeRelPerm(state);
|
||||
|
||||
const ADB cmax = computeCmax(state.concentration);
|
||||
const ADB krw_eff = polymer_props_.effectiveRelPerm(c, cmax, kr[0], state.saturation[0]);
|
||||
const ADB ads = adsorption(state.concentration, cmax);
|
||||
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(c, cmax, kr[0], state.saturation[0]);
|
||||
|
||||
const std::vector<ADB> mflux = computeMassFlux(trans, kr, state);
|
||||
const std::vector<ADB> source = accumSource(phase, kr, src);
|
||||
residual_[phase] =
|
||||
pvdt*(state.saturation[phase] - old_state.saturation[phase])
|
||||
+ ops_.div*mflux - source;
|
||||
}
|
||||
const ADB mc = computeMc(state);
|
||||
const std::vector<ADB> mflux = computeMassFlux(trans, mc, kr[0], krw_eff, state);
|
||||
const std::vector<ADB> source = accumSource(kr[1], krw_eff, state.concentration, src, polymer_inflow);
|
||||
const double rho_r = polymer_props_ad_.rockDensity();
|
||||
const V phi = V::Constant(pvdt.size(), 1, *fluid_.porosity());
|
||||
residual_[0] = pvdt*(state.saturation[0] - old_state.saturation[0])
|
||||
+ ops_.div*mflux[0] - source[0];
|
||||
residual_[1] = pvdt*(state.saturation[1] - old_state.saturation[1])
|
||||
+ ops_.div*mflux[1] - source[1];
|
||||
// Mass balance equation for polymer
|
||||
const ADB src_polymer = polymerSource(kr, src, polymer_inflow, state);
|
||||
ADB mc = computeMc(state);
|
||||
ADB poly_mflux = computePolymerMassFlux(trans, mc, kr, state);
|
||||
residual_[2] = pvdt * (state.saturation[0] * state.concentration
|
||||
- old_state.saturation[0] * old_state.concentration)
|
||||
+
|
||||
+ ops_.div * poly_mflux - src_polymer;
|
||||
+ pvdt * rho_r * (1. - phi) / phi * ads
|
||||
+ ops_.div * mflux[3] - srouce[3];
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwophasePolymerSolver::accumSource(const std::vector<ADB>& kr,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& polymer_inflow_c,
|
||||
const SolutionState& state) const
|
||||
{
|
||||
//extract the source to out and in source.
|
||||
std::vector<double> outsrc;
|
||||
std::vector<double> insrc;
|
||||
std::vector<double>::const_iterator it;
|
||||
for (it = src.begin(); it != src.end(); ++it) {
|
||||
if (*it < 0) {
|
||||
outsrc.push_back(*it);
|
||||
insrc.push_back(0.0);
|
||||
} else if (*it > 0) {
|
||||
insrc.push_back(*it);
|
||||
outsrc.push_back(0.0);
|
||||
} else {
|
||||
outsrc.emplace_back(0);
|
||||
insrc.emplace_back(0);
|
||||
}
|
||||
}
|
||||
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
|
||||
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
|
||||
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
|
||||
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
|
||||
// compute the out-fracflow.
|
||||
ADB f_out = computeFracFlow(phase, kr);
|
||||
// compute the in-fracflow.
|
||||
V f_in;
|
||||
if (phase == 1) {
|
||||
f_in = V::Zero(grid_.number_of_cells);
|
||||
} else if (phase == 0) {
|
||||
f_in = V::Ones(grid_.number_of_cells);
|
||||
}
|
||||
return f_out * outSrc + f_in * inSrc ;
|
||||
}
|
||||
|
||||
|
||||
ADB
|
||||
FullyImplicitTwophasePolymerSolver::
|
||||
polymerSource(const std::vector<ADB>& kr,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& polymer_inflow_c,
|
||||
const SolutionState& state) const
|
||||
{
|
||||
//extract the source to out and in source.
|
||||
std::vector<double> outsrc;
|
||||
std::vector<double> insrc;
|
||||
std::vector<double>::const_iterator it;
|
||||
for (it = src.begin(); it != src.end(); ++it) {
|
||||
if (*it < 0) {
|
||||
outsrc.push_back(*it);
|
||||
insrc.push_back(0.0);
|
||||
} else if (*it > 0) {
|
||||
insrc.push_back(*it);
|
||||
outsrc.push_back(0.0);
|
||||
} else {
|
||||
outsrc.emplace_back(0);
|
||||
insrc.emplace_back(0);
|
||||
}
|
||||
}
|
||||
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
|
||||
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
|
||||
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
|
||||
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
|
||||
// compute the out-fracflow.
|
||||
ADB f_out = computeFracFlow(0, kr);
|
||||
// compute the in-fracflow.
|
||||
V f_in = V::Ones(grid_.number_of_cells);
|
||||
|
||||
// ADB polymer_insrc = ADB::function(f_in * inSrc * polyin, state.concentration.derivative());
|
||||
return f_out * outSrc * state.concentration + f_in * inSrc * polyin;
|
||||
}
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwophasePolymerSolver::computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const
|
||||
FullyImplicitTwophasePolymerSolver::computeMassFlux(const V& trans,
|
||||
const ADB& mc,
|
||||
const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const SolutionState& state ) const
|
||||
{
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB mob_phase = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
ADB mob_wat = kr[0] / V::Constant(kr[0].size(), 1, mus[0]);
|
||||
ADB mob_oil= kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB total_mob = mob_wat + mob_oil;
|
||||
ADB f = mob_phase / total_mob;
|
||||
std::vector<ADB> mflux;
|
||||
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mus);
|
||||
ADB wat_mob = krw_eff * inv_wat_eff_vis;
|
||||
ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB poly_mob = mc * krw_eff * inv_wat_eff_vis;
|
||||
|
||||
return f;
|
||||
|
||||
const ADB dp = ops_.ngrad * state.pressure;
|
||||
const ADB head = trans * dp;
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
mflux.push_back(upwind.select(wat_mob)*head);
|
||||
mflux.push_back(upwind.select(oil_mob)*head);
|
||||
mflux.push_back(upwind.select(poly_mob)*head);
|
||||
|
||||
|
||||
return mflux;
|
||||
}
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwophasePolymerSolver::accumSource(const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const ADB& c,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& polymer_inflow_c) const
|
||||
{
|
||||
//extract the source to out and in source.
|
||||
std::vector<double> outsrc;
|
||||
std::vector<double> insrc;
|
||||
std::vector<double>::const_iterator it;
|
||||
for (it = src.begin(); it != src.end(); ++it) {
|
||||
if (*it < 0) {
|
||||
outsrc.push_back(*it);
|
||||
insrc.push_back(0.0);
|
||||
} else if (*it > 0) {
|
||||
insrc.push_back(*it);
|
||||
outsrc.push_back(0.0);
|
||||
} else {
|
||||
outsrc.emplace_back(0);
|
||||
insrc.emplace_back(0);
|
||||
}
|
||||
}
|
||||
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
|
||||
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
|
||||
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
|
||||
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
|
||||
// compute the out-fracflow.
|
||||
const std::vector<ADB> f = computeFracFlow(kro, krw_eff, c);
|
||||
// compute the in-fracflow.
|
||||
V zero = V::Zero(grid_.number_of_cells);
|
||||
V one = V::Ones(grid_.number_of_cells);
|
||||
return f_out * outSrc + f_in * inSrc ;
|
||||
|
||||
std::vector<ADB> source;
|
||||
//water source
|
||||
source.push_back(f[0] * outSrc + one * inSrc);
|
||||
//oil source
|
||||
source.push_back(f[1] * outSrc + zero * inSrc);
|
||||
//polymer source
|
||||
source.push_back(f[0] * outSrc * c + one * inSrc * polyin)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwophasePolymerSolver::computeFracFlow(const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const ADB& c) const
|
||||
{
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(c, mus);
|
||||
ADB wat_mob = kr[0] * inv_wat_eff_vis;
|
||||
ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB total_mob = wat_mob + oil_mob;
|
||||
|
||||
std::vector<ADB> fracflow;
|
||||
|
||||
fracflow.push_back(wat_mob / total_mob);
|
||||
fracflow.push_back(oil_mob / total_mob);
|
||||
|
||||
return fracflow;
|
||||
}
|
||||
|
||||
|
||||
@@ -471,29 +473,6 @@ typedef Eigen::Array<double,
|
||||
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitTwophasePolymerSolver::computeMassFlux(const V& trans,
|
||||
const ADB& mc,
|
||||
const std::vector<ADB>& kr ,
|
||||
const SolutionState& state ) const
|
||||
{
|
||||
const double* mus = fluid_.viscosity();
|
||||
std::vector<ADB> mflux(2, ADB::null());
|
||||
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mus);
|
||||
ADB wat_mob = kr[0] * inv_wat_eff_vis;
|
||||
ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB poly_mob = mc * kr[0] * inv_wat_eff_vis;
|
||||
|
||||
|
||||
const ADB dp = ops_.ngrad * state.pressure;
|
||||
const ADB head = trans * dp;
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
mflux.push_back(upwind.select(wat_mob)*head);
|
||||
mflux.push_back(upwind.select(oil_mob)*head);
|
||||
mflux.push_back(upwind.select(poly_mob)*head);
|
||||
return mflux;
|
||||
}
|
||||
|
||||
|
||||
double
|
||||
@@ -528,7 +507,7 @@ typedef Eigen::Array<double,
|
||||
return trans;
|
||||
}
|
||||
|
||||
|
||||
// here mc means m(c) * c.
|
||||
ADB
|
||||
FullyImplicitTwophasePolymerSolver::computeMc(const SolutionState& state) const
|
||||
{
|
||||
|
||||
@@ -70,18 +70,26 @@ namespace Opm {
|
||||
computeRelPerm(const SolutionState& state) const;
|
||||
V
|
||||
transmissibility() const;
|
||||
ADB
|
||||
computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const;
|
||||
ADB
|
||||
accumSource(const int phase,
|
||||
const std::vector<ADB>& kr,
|
||||
const std::vector<double>& src) const;
|
||||
ADB
|
||||
computeMassFlux(const int phase,
|
||||
const V& trans,
|
||||
const std::vector<ADB>& kr,
|
||||
const SolutionState& state) const;
|
||||
|
||||
std::vector<ADB>
|
||||
computeMassFlux(const V& trans,
|
||||
const ADB& mc,
|
||||
const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const SolutionState& state ) const;
|
||||
|
||||
std::vector<ADB>
|
||||
accumSource(const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const ADB& c,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& polymer_inflow_c) const;
|
||||
|
||||
|
||||
std::vector<ADB>
|
||||
computeFracFlow(const ADB& kro,
|
||||
const ADB& krw_eff,
|
||||
const ADB& c) const;
|
||||
ADB
|
||||
computePolymerMassFlux(const V& trans,
|
||||
const ADB& mc,
|
||||
|
||||
Reference in New Issue
Block a user