add adsorption term for polymer equation.

rewrite some function for simplify.
This commit is contained in:
Liu Ming
2013-12-12 21:24:47 +08:00
parent 0558184439
commit 25160d019a
3 changed files with 121 additions and 134 deletions

View File

@@ -258,115 +258,117 @@ typedef Eigen::Array<double,
const std::vector<ADB> kr = computeRelPerm(state); const std::vector<ADB> kr = computeRelPerm(state);
const ADB cmax = computeCmax(state.concentration); const ADB cmax = computeCmax(state.concentration);
const ADB krw_eff = polymer_props_.effectiveRelPerm(c, cmax, kr[0], state.saturation[0]); const ADB ads = adsorption(state.concentration, cmax);
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(c, cmax, kr[0], state.saturation[0]);
const std::vector<ADB> mflux = computeMassFlux(trans, kr, state); const ADB mc = computeMc(state);
const std::vector<ADB> source = accumSource(phase, kr, src); const std::vector<ADB> mflux = computeMassFlux(trans, mc, kr[0], krw_eff, state);
residual_[phase] = const std::vector<ADB> source = accumSource(kr[1], krw_eff, state.concentration, src, polymer_inflow);
pvdt*(state.saturation[phase] - old_state.saturation[phase]) const double rho_r = polymer_props_ad_.rockDensity();
+ ops_.div*mflux - source; const V phi = V::Constant(pvdt.size(), 1, *fluid_.porosity());
} residual_[0] = pvdt*(state.saturation[0] - old_state.saturation[0])
+ ops_.div*mflux[0] - source[0];
residual_[1] = pvdt*(state.saturation[1] - old_state.saturation[1])
+ ops_.div*mflux[1] - source[1];
// Mass balance equation for polymer // Mass balance equation for polymer
const ADB src_polymer = polymerSource(kr, src, polymer_inflow, state);
ADB mc = computeMc(state);
ADB poly_mflux = computePolymerMassFlux(trans, mc, kr, state);
residual_[2] = pvdt * (state.saturation[0] * state.concentration residual_[2] = pvdt * (state.saturation[0] * state.concentration
- old_state.saturation[0] * old_state.concentration) - old_state.saturation[0] * old_state.concentration)
+ + pvdt * rho_r * (1. - phi) / phi * ads
+ ops_.div * poly_mflux - src_polymer; + ops_.div * mflux[3] - srouce[3];
} }
std::vector<ADB> std::vector<ADB>
FullyImplicitTwophasePolymerSolver::accumSource(const std::vector<ADB>& kr, FullyImplicitTwophasePolymerSolver::computeMassFlux(const V& trans,
const std::vector<double>& src, const ADB& mc,
const std::vector<double>& polymer_inflow_c, const ADB& kro,
const SolutionState& state) const const ADB& krw_eff,
{ const SolutionState& state ) const
//extract the source to out and in source.
std::vector<double> outsrc;
std::vector<double> insrc;
std::vector<double>::const_iterator it;
for (it = src.begin(); it != src.end(); ++it) {
if (*it < 0) {
outsrc.push_back(*it);
insrc.push_back(0.0);
} else if (*it > 0) {
insrc.push_back(*it);
outsrc.push_back(0.0);
} else {
outsrc.emplace_back(0);
insrc.emplace_back(0);
}
}
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
// compute the out-fracflow.
ADB f_out = computeFracFlow(phase, kr);
// compute the in-fracflow.
V f_in;
if (phase == 1) {
f_in = V::Zero(grid_.number_of_cells);
} else if (phase == 0) {
f_in = V::Ones(grid_.number_of_cells);
}
return f_out * outSrc + f_in * inSrc ;
}
ADB
FullyImplicitTwophasePolymerSolver::
polymerSource(const std::vector<ADB>& kr,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c,
const SolutionState& state) const
{
//extract the source to out and in source.
std::vector<double> outsrc;
std::vector<double> insrc;
std::vector<double>::const_iterator it;
for (it = src.begin(); it != src.end(); ++it) {
if (*it < 0) {
outsrc.push_back(*it);
insrc.push_back(0.0);
} else if (*it > 0) {
insrc.push_back(*it);
outsrc.push_back(0.0);
} else {
outsrc.emplace_back(0);
insrc.emplace_back(0);
}
}
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
// compute the out-fracflow.
ADB f_out = computeFracFlow(0, kr);
// compute the in-fracflow.
V f_in = V::Ones(grid_.number_of_cells);
// ADB polymer_insrc = ADB::function(f_in * inSrc * polyin, state.concentration.derivative());
return f_out * outSrc * state.concentration + f_in * inSrc * polyin;
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::computeFracFlow(int phase,
const std::vector<ADB>& kr) const
{ {
const double* mus = fluid_.viscosity(); const double* mus = fluid_.viscosity();
ADB mob_phase = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]); std::vector<ADB> mflux;
ADB mob_wat = kr[0] / V::Constant(kr[0].size(), 1, mus[0]); ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mus);
ADB mob_oil= kr[1] / V::Constant(kr[1].size(), 1, mus[1]); ADB wat_mob = krw_eff * inv_wat_eff_vis;
ADB total_mob = mob_wat + mob_oil; ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
ADB f = mob_phase / total_mob; ADB poly_mob = mc * krw_eff * inv_wat_eff_vis;
return f;
const ADB dp = ops_.ngrad * state.pressure;
const ADB head = trans * dp;
UpwindSelector<double> upwind(grid_, ops_, head.value());
mflux.push_back(upwind.select(wat_mob)*head);
mflux.push_back(upwind.select(oil_mob)*head);
mflux.push_back(upwind.select(poly_mob)*head);
return mflux;
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::accumSource(const ADB& kro,
const ADB& krw_eff,
const ADB& c,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c) const
{
//extract the source to out and in source.
std::vector<double> outsrc;
std::vector<double> insrc;
std::vector<double>::const_iterator it;
for (it = src.begin(); it != src.end(); ++it) {
if (*it < 0) {
outsrc.push_back(*it);
insrc.push_back(0.0);
} else if (*it > 0) {
insrc.push_back(*it);
outsrc.push_back(0.0);
} else {
outsrc.emplace_back(0);
insrc.emplace_back(0);
}
}
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
// compute the out-fracflow.
const std::vector<ADB> f = computeFracFlow(kro, krw_eff, c);
// compute the in-fracflow.
V zero = V::Zero(grid_.number_of_cells);
V one = V::Ones(grid_.number_of_cells);
return f_out * outSrc + f_in * inSrc ;
std::vector<ADB> source;
//water source
source.push_back(f[0] * outSrc + one * inSrc);
//oil source
source.push_back(f[1] * outSrc + zero * inSrc);
//polymer source
source.push_back(f[0] * outSrc * c + one * inSrc * polyin)
}
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::computeFracFlow(const ADB& kro,
const ADB& krw_eff,
const ADB& c) const
{
const double* mus = fluid_.viscosity();
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(c, mus);
ADB wat_mob = kr[0] * inv_wat_eff_vis;
ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
ADB total_mob = wat_mob + oil_mob;
std::vector<ADB> fracflow;
fracflow.push_back(wat_mob / total_mob);
fracflow.push_back(oil_mob / total_mob);
return fracflow;
} }
@@ -471,29 +473,6 @@ typedef Eigen::Array<double,
std::vector<ADB>
FullyImplicitTwophasePolymerSolver::computeMassFlux(const V& trans,
const ADB& mc,
const std::vector<ADB>& kr ,
const SolutionState& state ) const
{
const double* mus = fluid_.viscosity();
std::vector<ADB> mflux(2, ADB::null());
ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mus);
ADB wat_mob = kr[0] * inv_wat_eff_vis;
ADB oil_mob = kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
ADB poly_mob = mc * kr[0] * inv_wat_eff_vis;
const ADB dp = ops_.ngrad * state.pressure;
const ADB head = trans * dp;
UpwindSelector<double> upwind(grid_, ops_, head.value());
mflux.push_back(upwind.select(wat_mob)*head);
mflux.push_back(upwind.select(oil_mob)*head);
mflux.push_back(upwind.select(poly_mob)*head);
return mflux;
}
double double
@@ -528,7 +507,7 @@ typedef Eigen::Array<double,
return trans; return trans;
} }
// here mc means m(c) * c.
ADB ADB
FullyImplicitTwophasePolymerSolver::computeMc(const SolutionState& state) const FullyImplicitTwophasePolymerSolver::computeMc(const SolutionState& state) const
{ {

View File

@@ -70,18 +70,26 @@ namespace Opm {
computeRelPerm(const SolutionState& state) const; computeRelPerm(const SolutionState& state) const;
V V
transmissibility() const; transmissibility() const;
ADB
computeFracFlow(int phase, std::vector<ADB>
const std::vector<ADB>& kr) const; computeMassFlux(const V& trans,
ADB const ADB& mc,
accumSource(const int phase, const ADB& kro,
const std::vector<ADB>& kr, const ADB& krw_eff,
const std::vector<double>& src) const; const SolutionState& state ) const;
ADB
computeMassFlux(const int phase, std::vector<ADB>
const V& trans, accumSource(const ADB& kro,
const std::vector<ADB>& kr, const ADB& krw_eff,
const SolutionState& state) const; const ADB& c,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c) const;
std::vector<ADB>
computeFracFlow(const ADB& kro,
const ADB& krw_eff,
const ADB& c) const;
ADB ADB
computePolymerMassFlux(const V& trans, computePolymerMassFlux(const V& trans,
const ADB& mc, const ADB& mc,