Split functionality between model and solver.

The step() method and everything to do with relaxation and oscillation
detection is now in the FullyImplicitSolver class.
This commit is contained in:
Atgeirr Flø Rasmussen 2015-05-19 10:19:30 +02:00
parent 24ab95122d
commit 2e7e6c6344
5 changed files with 245 additions and 2822 deletions

View File

@ -57,6 +57,10 @@ namespace Opm {
class BlackoilModel
{
public:
// --------- Types and enums ---------
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
@ -64,28 +68,24 @@ namespace Opm {
enum RelaxType { DAMPEN, SOR };
// class holding the solver parameters
struct SolverParameter
struct ModelParameter
{
double dp_max_rel_;
double ds_max_;
double dr_max_rel_;
enum RelaxType relax_type_;
double relax_max_;
double relax_increment_;
double relax_rel_tol_;
double max_residual_allowed_;
double tolerance_mb_;
double tolerance_cnv_;
double tolerance_wells_;
int max_iter_; // max newton iterations
int min_iter_; // min newton iterations
SolverParameter( const parameter::ParameterGroup& param );
SolverParameter();
ModelParameter( const parameter::ParameterGroup& param );
ModelParameter();
void reset();
};
// --------- Public methods ---------
/// Construct a solver. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
@ -96,7 +96,7 @@ namespace Opm {
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
BlackoilModel(const SolverParameter& param,
BlackoilModel(const ModelParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
@ -105,7 +105,7 @@ namespace Opm {
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output);
const bool terminal_output);
/// \brief Set threshold pressures that prevent or reduce flow.
/// This prevents flow across faces if the potential
@ -117,26 +117,57 @@ namespace Opm {
/// of the grid passed in the constructor.
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
/// Take a single forward step, modifiying
/// state.pressure()
/// state.faceflux()
/// state.saturation()
/// state.gasoilratio()
/// wstate.bhp()
/// \param[in] dt time step size
/// \param[in] state reservoir state
/// \param[in] wstate well state
/// \return number of linear iterations used
int
step(const double dt ,
BlackoilState& state ,
WellStateFullyImplicitBlackoil& wstate);
/// Called once before each time step.
/// \param[in] dt time step size
/// \param[in] reservoir_state reservoir state variables
/// \param[in] well_state well state variables
void prepareStep(const double dt,
const ReservoirState& reservoir_state,
const WellState& well_state);
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] dt time step size
/// \param[in] reservoir_state reservoir state variables
/// \param[in] well_state well state variables
void
assemble(const BlackoilState& reservoir_state,
WellStateFullyImplicitBlackoil& well_state,
const bool initial_assembly);
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
/// The size (number of unknowns) of the nonlinear system of equations.
int sizeNonLinear() const;
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const;
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const;
void updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state);
/// Return true if output to cout is wanted.
bool terminalOutput() const;
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
bool getConvergence(const double dt, const int iteration);
/// The number of active phases in the model.
int numPhases() const;
private:
// Types and enums
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
// --------- Types and enums ---------
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
@ -178,7 +209,8 @@ namespace Opm {
enum PrimalVariables { Sg = 0, RS = 1, RV = 2 };
// Member data
// --------- Data members ---------
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
@ -195,7 +227,7 @@ namespace Opm {
const bool has_disgas_;
const bool has_vapoil_;
SolverParameter param_;
ModelParameter param_;
bool use_threshold_pressure_;
V threshold_pressures_by_interior_face_;
@ -209,8 +241,9 @@ namespace Opm {
bool terminal_output_;
std::vector<int> primalVariable_;
V pvdt_;
// Private methods.
// --------- Private methods ---------
// return true if wells are available
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
@ -247,18 +280,6 @@ namespace Opm {
void updateWellControls(WellStateFullyImplicitBlackoil& xw) const;
void
assemble(const V& dtpv,
const BlackoilState& x,
const bool initial_assembly,
WellStateFullyImplicitBlackoil& xw);
V solveJacobianSystem() const;
void updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state);
std::vector<ADB>
computePressures(const SolutionState& state) const;
@ -286,12 +307,6 @@ namespace Opm {
void applyThresholdPressures(ADB& dp);
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
ADB
fluidViscosity(const int phase,
const ADB& p ,
@ -365,10 +380,6 @@ namespace Opm {
void
updatePhaseCondFromPrimalVariable();
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
bool getConvergence(const double dt, const int iteration);
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
@ -397,21 +408,9 @@ namespace Opm {
std::array<double,MaxNumPhases>& B_avg,
int nc) const;
void detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const;
void stablizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
enum RelaxType relaxType() const { return param_.relax_type_; }
double relaxMax() const { return param_.relax_max_; };
double relaxIncrement() const { return param_.relax_increment_; };
double relaxRelTol() const { return param_.relax_rel_tol_; };
double maxIter() const { return param_.max_iter_; }
double minIter() const { return param_.min_iter_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
};

View File

@ -136,19 +136,13 @@ namespace detail {
} // namespace detail
template <class Grid>
void BlackoilModel<Grid>::SolverParameter::
void BlackoilModel<Grid>::ModelParameter::
reset()
{
// default values for the solver parameters
dp_max_rel_ = 1.0e9;
ds_max_ = 0.2;
dr_max_rel_ = 1.0e9;
relax_type_ = DAMPEN;
relax_max_ = 0.5;
relax_increment_ = 0.1;
relax_rel_tol_ = 0.2;
max_iter_ = 15; // not more then 15 its by default
min_iter_ = 1; // Default to always do at least one nonlinear iteration.
max_residual_allowed_ = 1e7;
tolerance_mb_ = 1.0e-5;
tolerance_cnv_ = 1.0e-2;
@ -156,16 +150,16 @@ namespace detail {
}
template <class Grid>
BlackoilModel<Grid>::SolverParameter::
SolverParameter()
BlackoilModel<Grid>::ModelParameter::
ModelParameter()
{
// set default values
reset();
}
template <class Grid>
BlackoilModel<Grid>::SolverParameter::
SolverParameter( const parameter::ParameterGroup& param )
BlackoilModel<Grid>::ModelParameter::
ModelParameter( const parameter::ParameterGroup& param )
{
// set default values
reset();
@ -174,38 +168,25 @@ namespace detail {
dp_max_rel_ = param.getDefault("dp_max_rel", dp_max_rel_);
ds_max_ = param.getDefault("ds_max", ds_max_);
dr_max_rel_ = param.getDefault("dr_max_rel", dr_max_rel_);
relax_max_ = param.getDefault("relax_max", relax_max_);
max_iter_ = param.getDefault("max_iter", max_iter_);
min_iter_ = param.getDefault("min_iter", min_iter_);
max_residual_allowed_ = param.getDefault("max_residual_allowed", max_residual_allowed_);
tolerance_mb_ = param.getDefault("tolerance_mb", tolerance_mb_);
tolerance_cnv_ = param.getDefault("tolerance_cnv", tolerance_cnv_);
tolerance_wells_ = param.getDefault("tolerance_wells", tolerance_wells_ );
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
if (relaxation_type == "dampen") {
relax_type_ = DAMPEN;
} else if (relaxation_type == "sor") {
relax_type_ = SOR;
} else {
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
}
}
template <class Grid>
BlackoilModel<Grid>::
BlackoilModel(const SolverParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
BlackoilModel(const ModelParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
@ -243,6 +224,66 @@ namespace detail {
template <class Grid>
void
BlackoilModel<Grid>::
prepareStep(const double dt,
const ReservoirState& reservoir_state,
const WellState& /* well_state */)
{
pvdt_ = geo_.poreVolume() / dt;
if (active_[Gas]) {
updatePrimalVariableFromState(reservoir_state);
}
}
template <class Grid>
int
BlackoilModel<Grid>::
sizeNonLinear() const
{
return residual_.sizeNonLinear();
}
template <class Grid>
int
BlackoilModel<Grid>::
linearIterationsLastSolve() const
{
return linsolver_.iterations();
}
template <class Grid>
bool
BlackoilModel<Grid>::
terminalOutput() const
{
return terminal_output_;
}
template <class Grid>
int
BlackoilModel<Grid>::
numPhases() const
{
return fluid_.numPhases();
}
template <class Grid>
void
BlackoilModel<Grid>::
@ -264,83 +305,6 @@ namespace detail {
template <class Grid>
int
BlackoilModel<Grid>::
step(const double dt,
BlackoilState& x ,
WellStateFullyImplicitBlackoil& xw)
{
const V pvdt = geo_.poreVolume() / dt;
if (active_[Gas]) { updatePrimalVariableFromState(x); }
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations
std::vector<std::vector<double>> residual_norms_history;
assemble(pvdt, x, true, xw);
bool converged = false;
double omega = 1.;
residual_norms_history.push_back(computeResidualNorms());
int it = 0;
converged = getConvergence(dt,it);
const int sizeNonLinear = residual_.sizeNonLinear();
V dxOld = V::Zero(sizeNonLinear);
bool isOscillate = false;
bool isStagnate = false;
const enum RelaxType relaxtype = relaxType();
int linearIterations = 0;
while ( (!converged && (it < maxIter())) || (minIter() > it)) {
V dx = solveJacobianSystem();
// store number of linear iterations used
linearIterations += linsolver_.iterations();
detectNewtonOscillations(residual_norms_history, it, relaxRelTol(), isOscillate, isStagnate);
if (isOscillate) {
omega -= relaxIncrement();
omega = std::max(omega, relaxMax());
if (terminal_output_)
{
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
}
}
stablizeNewton(dx, dxOld, omega, relaxtype);
updateState(dx, x, xw);
assemble(pvdt, x, false, xw);
residual_norms_history.push_back(computeResidualNorms());
// increase iteration counter
++it;
converged = getConvergence(dt,it);
}
if (!converged) {
std::cerr << "WARNING: Failed to compute converged solution in " << it << " iterations." << std::endl;
return -1; // -1 indicates that the solver has to be restarted
}
return linearIterations;
}
template <class Grid>
BlackoilModel<Grid>::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
@ -752,19 +716,18 @@ namespace detail {
template <class Grid>
void
BlackoilModel<Grid>::
assemble(const V& pvdt,
const BlackoilState& x ,
const bool initial_assembly,
WellStateFullyImplicitBlackoil& xw )
assemble(const BlackoilState& reservoir_state,
WellStateFullyImplicitBlackoil& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
updateWellControls(xw);
updateWellControls(well_state);
// Create the primary variables.
SolutionState state = variableState(x, xw);
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
@ -773,7 +736,7 @@ namespace detail {
// Compute initial accumulation contributions
// and well connection pressures.
computeAccum(state0, 0);
computeWellConnectionPressures(state0, xw);
computeWellConnectionPressures(state0, well_state);
}
// DISKVAL(state.pressure);
@ -801,18 +764,10 @@ namespace detail {
const std::vector<ADB> kr = computeRelPerm(state);
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], state.canonical_phase_pressures[canph_[phaseIdx]], state);
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
// std::cout << kr[phase];
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
// std::cout << rq_[phase].mflux;
residual_.material_balance_eq[ phaseIdx ] =
pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
+ ops_.div*rq_[phaseIdx].mflux;
// DUMP(ops_.div*rq_[phase].mflux);
// DUMP(residual_.material_balance_eq[phase]);
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
@ -843,8 +798,8 @@ namespace detail {
// Add contribution from wells and set up the well equations.
V aliveWells;
addWellEq(state, xw, aliveWells);
addWellControlEq(state, xw, aliveWells);
addWellEq(state, well_state, aliveWells);
addWellControlEq(state, well_state, aliveWells);
}
@ -1756,74 +1711,6 @@ namespace detail {
return residualNorms;
}
template <class Grid>
void
BlackoilModel<Grid>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
const std::vector<double>& F0 = residual_history[it];
const std::vector<double>& F1 = residual_history[it - 1];
const std::vector<double>& F2 = residual_history[it - 2];
for (int p= 0; p < fluid_.numPhases(); ++p){
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
}
oscillate = (oscillatePhase > 1);
}
template <class Grid>
void
BlackoilModel<Grid>::stablizeNewton(V& dx, V& dxOld, const double omega,
const RelaxType relax_type) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
const V tempDxOld = dxOld;
dxOld = dx;
switch (relax_type) {
case DAMPEN:
if (omega == 1.) {
return;
}
dx = dx*omega;
return;
case SOR:
if (omega == 1.) {
return;
}
dx = dx*omega + (1.-omega)*tempDxOld;
return;
default:
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
}
return;
}
template <class Grid>
double
BlackoilModel<Grid>::convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,

View File

@ -23,7 +23,7 @@
// #include <cassert>
// #include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
// #include <opm/autodiff/AutoDiffHelpers.hpp>
// #include <opm/autodiff/BlackoilPropsAdInterface.hpp>
// #include <opm/autodiff/LinearisedBlackoilResidual.hpp>
@ -36,7 +36,7 @@
namespace Opm {
// namespace parameter { class ParameterGroup; }
namespace parameter { class ParameterGroup; }
// class DerivedGeology;
// class RockCompressibility;
// class NewtonIterationBlackoilInterface;
@ -46,23 +46,52 @@ namespace Opm {
class FullyImplicitSolver
{
public:
// --------- Types and enums ---------
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
// The Newton relaxation scheme type
enum RelaxType { DAMPEN, SOR };
// Solver parameters controlling nonlinear Newton process.
struct SolverParameter
{
enum RelaxType relax_type_;
double relax_max_;
double relax_increment_;
double relax_rel_tol_;
int max_iter_; // max newton iterations
int min_iter_; // min newton iterations
SolverParameter( const parameter::ParameterGroup& param );
SolverParameter();
void reset();
};
// Forwarding types from PhysicalModel.
typedef typename PhysicalModel::ReservoirState ReservoirState;
typedef typename PhysicalModel::WellState WellState;
/// Construct solver for a given model.
explicit FullyImplicitSolver(PhysicalModel& model);
// --------- Public methods ---------
/// Take a single forward step, after which the state will be modified
/// according to PhysicalModel.
/// \param[in] dt time step size
/// \param[in] state reservoir state
/// \param[in] wstate well state
/// \return number of linear iterations used
/// Construct solver for a given model.
/// \param[in] param parameters controlling nonlinear Newton process
/// \param[in, out] model physical simulation model
explicit FullyImplicitSolver(const SolverParameter& param,
PhysicalModel& model);
/// Take a single forward step, after which the states will be modified
/// according to the physical model.
/// \param[in] dt time step size
/// \param[in] reservoir_state reservoir state variables
/// \param[in] well_state well state variables
/// \return number of linear iterations used
int
step(const double dt,
ReservoirState& state,
WellState& wstate);
ReservoirState& reservoir_state,
WellState& well_state);
/// Number of Newton iterations used in all calls to step().
unsigned int newtonIterations() const;
@ -71,351 +100,23 @@ namespace Opm {
unsigned int linearIterations() const;
private:
// --------- Data members ---------
SolverParameter param_;
PhysicalModel& model_;
unsigned int newtonIterations_;
unsigned int linearIterations_;
/*
// the Newton relaxation type
enum RelaxType { DAMPEN, SOR };
// class holding the solver parameters
struct SolverParameter
{
double dp_max_rel_;
double ds_max_;
double dr_max_rel_;
enum RelaxType relax_type_;
double relax_max_;
double relax_increment_;
double relax_rel_tol_;
double max_residual_allowed_;
double tolerance_mb_;
double tolerance_cnv_;
double tolerance_wells_;
int max_iter_; // max newton iterations
int min_iter_; // min newton iterations
SolverParameter( const parameter::ParameterGroup& param );
SolverParameter();
void reset();
};
/// Construct a solver. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
FullyImplicitSolver(const SolverParameter& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output);
/// \brief Set threshold pressures that prevent or reduce flow.
/// This prevents flow across faces if the potential
/// difference is less than the threshold. If the potential
/// difference is greater, the threshold value is subtracted
/// before calculating flow. This is treated symmetrically, so
/// flow is prevented or reduced in both directions equally.
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
/// of the grid passed in the constructor.
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
private:
// Types and enums
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
struct ReservoirResidualQuant {
ReservoirResidualQuant();
std::vector<ADB> accum; // Accumulations
ADB mflux; // Mass flux (surface conditions)
ADB b; // Reciprocal FVF
ADB head; // Pressure drop across int. interfaces
ADB mob; // Phase mobility (per cell)
};
struct SolutionState {
SolutionState(const int np);
ADB pressure;
ADB temperature;
std::vector<ADB> saturation;
ADB rs;
ADB rv;
ADB qs;
ADB bhp;
// Below are quantities stored in the state for optimization purposes.
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
};
struct WellOps {
WellOps(const Wells* wells);
M w2p; // well -> perf (scatter)
M p2w; // perf -> well (gather)
};
enum { Water = BlackoilPropsAdInterface::Water,
Oil = BlackoilPropsAdInterface::Oil ,
Gas = BlackoilPropsAdInterface::Gas ,
MaxNumPhases = BlackoilPropsAdInterface::MaxNumPhases
};
enum PrimalVariables { Sg = 0, RS = 1, RV = 2 };
// Member data
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
const RockCompressibility* rock_comp_props_;
const Wells* wells_;
const NewtonIterationBlackoilInterface& linsolver_;
// For each canonical phase -> true if active
const std::vector<bool> active_;
// Size = # active phases. Maps active -> canonical phase indices.
const std::vector<int> canph_;
const std::vector<int> cells_; // All grid cells
HelperOps ops_;
const WellOps wops_;
const bool has_disgas_;
const bool has_vapoil_;
SolverParameter param_;
bool use_threshold_pressure_;
V threshold_pressures_by_interior_face_;
std::vector<ReservoirResidualQuant> rq_;
std::vector<PhasePresence> phaseCondition_;
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
LinearisedBlackoilResidual residual_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
std::vector<int> primalVariable_;
// Private methods.
// return true if wells are available
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
// return wells object
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
SolutionState
constantState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw) const;
void
makeConstantState(SolutionState& state) const;
SolutionState
variableState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw) const;
void
computeAccum(const SolutionState& state,
const int aix );
void computeWellConnectionPressures(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw);
void
addWellControlEq(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw,
const V& aliveWells);
void
addWellEq(const SolutionState& state,
WellStateFullyImplicitBlackoil& xw,
V& aliveWells);
void updateWellControls(WellStateFullyImplicitBlackoil& xw) const;
void
assemble(const V& dtpv,
const BlackoilState& x,
const bool initial_assembly,
WellStateFullyImplicitBlackoil& xw);
V solveJacobianSystem() const;
void updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state);
std::vector<ADB>
computePressures(const SolutionState& state) const;
std::vector<ADB>
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const;
V
computeGasPressure(const V& po,
const V& sw,
const V& so,
const V& sg) const;
std::vector<ADB>
computeRelPerm(const SolutionState& state) const;
void
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& p ,
const SolutionState& state );
void applyThresholdPressures(ADB& dp);
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
V
fluidRsSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRsSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
V
fluidRvSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRvSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
ADB
poroMult(const ADB& p) const;
ADB
transMult(const ADB& p) const;
void
classifyCondition(const SolutionState& state,
std::vector<PhasePresence>& cond ) const;
const std::vector<PhasePresence>
phaseCondition() const {return phaseCondition_;}
void
classifyCondition(const BlackoilState& state);
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
/// be active to call this method.
void
updatePrimalVariableFromState(const BlackoilState& state);
/// Update the phaseCondition_ member based on the primalVariable_ member.
void
updatePhaseCondFromPrimalVariable();
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
bool getConvergence(const double dt, const int iteration);
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
std::array<double,MaxNumPhases>& R_sum,
std::array<double,MaxNumPhases>& maxCoeff,
std::array<double,MaxNumPhases>& B_avg,
int nc) const;
// --------- Private methods ---------
enum RelaxType relaxType() const { return param_.relax_type_; }
double relaxMax() const { return param_.relax_max_; }
double relaxIncrement() const { return param_.relax_increment_; }
double relaxRelTol() const { return param_.relax_rel_tol_; }
double maxIter() const { return param_.max_iter_; }
double minIter() const { return param_.min_iter_; }
void detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const;
void stablizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
enum RelaxType relaxType() const { return param_.relax_type_; }
double relaxMax() const { return param_.relax_max_; };
double relaxIncrement() const { return param_.relax_increment_; };
double relaxRelTol() const { return param_.relax_rel_tol_; };
double maxIter() const { return param_.max_iter_; }
double minIter() const { return param_.min_iter_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
*/
void stabilizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
};
} // namespace Opm

File diff suppressed because it is too large Load Diff

View File

@ -232,7 +232,13 @@ namespace Opm
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
typename BlackoilModel<T>::SolverParameter solverParam( param_ );
typedef T Grid;
typedef BlackoilModel<Grid> Model;
typedef typename Model::ModelParameter ModelParam;
ModelParam modelParam( param_ );
typedef FullyImplicitSolver<Model> Solver;
typedef typename Solver::SolverParameter SolverParam;
SolverParam solverParam( param_ );
// adaptive time stepping
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
@ -292,13 +298,11 @@ namespace Opm
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
typedef T Grid;
typedef BlackoilModel<Grid> Model;
Model model(solverParam, grid_, props_, geo_, rock_comp_props_, wells, solver_, has_disgas_, has_vapoil_, terminal_output_);
Model model(modelParam, grid_, props_, geo_, rock_comp_props_, wells, solver_, has_disgas_, has_vapoil_, terminal_output_);
if (!threshold_pressures_by_face_.empty()) {
model.setThresholdPressures(threshold_pressures_by_face_);
}
FullyImplicitSolver<Model> solver(model);
Solver solver(solverParam, model);
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are to large for the solver to converge