mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
remove unused function Opm::detail::convergenceReduction()
This commit is contained in:
parent
f29dae5409
commit
4020490a29
@ -59,109 +59,6 @@ namespace detail {
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Compute the reduction within the convergence check.
|
||||
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. B.col(i) contains the values
|
||||
/// for phase i.
|
||||
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. tempV.col(i) contains the
|
||||
/// values
|
||||
/// for phase i.
|
||||
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. B.col(i) contains the values
|
||||
/// for phase i.
|
||||
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
|
||||
/// of R for the phase i.
|
||||
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
|
||||
/// maximum of tempV for the phase i.
|
||||
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
|
||||
/// of B for the phase i.
|
||||
/// \param[out] maxNormWell The maximum of the well flux equations for each phase.
|
||||
/// \param[in] nc The number of cells of the local grid.
|
||||
/// \return The total pore volume over all cells.
|
||||
inline
|
||||
double
|
||||
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
|
||||
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
|
||||
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
|
||||
std::vector<double>& R_sum,
|
||||
std::vector<double>& maxCoeff,
|
||||
std::vector<double>& B_avg,
|
||||
std::vector<double>& maxNormWell,
|
||||
int nc,
|
||||
int np,
|
||||
const std::vector<double> pv,
|
||||
std::vector<double> residual_well)
|
||||
{
|
||||
const int nw = residual_well.size() / np;
|
||||
assert(nw * np == int(residual_well.size()));
|
||||
|
||||
// Do the global reductions
|
||||
#if 0 // HAVE_MPI
|
||||
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const ParallelISTLInformation& info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
||||
|
||||
// Compute the global number of cells and porevolume
|
||||
std::vector<int> v(nc, 1);
|
||||
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
|
||||
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
|
||||
Opm::Reduction::makeGlobalSumFunctor<double>());
|
||||
auto nc_and_pv_containers = std::make_tuple(v, pv);
|
||||
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
|
||||
|
||||
for ( int idx = 0; idx < np; ++idx )
|
||||
{
|
||||
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
|
||||
auto containers = std::make_tuple(B.col(idx),
|
||||
tempV.col(idx),
|
||||
R.col(idx));
|
||||
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
|
||||
Opm::Reduction::makeGlobalMaxFunctor<double>(),
|
||||
Opm::Reduction::makeGlobalSumFunctor<double>());
|
||||
info.computeReduction(containers, operators, values);
|
||||
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
|
||||
maxCoeff[idx] = std::get<1>(values);
|
||||
R_sum[idx] = std::get<2>(values);
|
||||
assert(np >= np);
|
||||
if (idx < np) {
|
||||
maxNormWell[idx] = 0.0;
|
||||
for ( int w = 0; w < nw; ++w ) {
|
||||
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
|
||||
}
|
||||
}
|
||||
}
|
||||
info.communicator().max(maxNormWell.data(), np);
|
||||
// Compute pore volume
|
||||
return std::get<1>(nc_and_pv);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
B_avg.resize(np);
|
||||
maxCoeff.resize(np);
|
||||
R_sum.resize(np);
|
||||
maxNormWell.resize(np);
|
||||
for ( int idx = 0; idx < np; ++idx )
|
||||
{
|
||||
B_avg[idx] = B.col(idx).sum()/nc;
|
||||
maxCoeff[idx] = tempV.col(idx).maxCoeff();
|
||||
R_sum[idx] = R.col(idx).sum();
|
||||
|
||||
assert(np >= np);
|
||||
if (idx < np) {
|
||||
maxNormWell[idx] = 0.0;
|
||||
for ( int w = 0; w < nw; ++w ) {
|
||||
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
|
||||
}
|
||||
}
|
||||
}
|
||||
// Compute total pore volume
|
||||
return std::accumulate(pv.begin(), pv.end(), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Compute the L-infinity norm of a vector representing a well equation.
|
||||
/// \param a The container to compute the infinity norm on.
|
||||
/// \param info In a parallel this holds the information about the data distribution.
|
||||
|
Loading…
Reference in New Issue
Block a user