remove unused function Opm::detail::convergenceReduction()

This commit is contained in:
Andreas Lauser 2016-12-15 14:11:58 +01:00
parent f29dae5409
commit 4020490a29

View File

@ -59,109 +59,6 @@ namespace detail {
}
}
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[out] maxNormWell The maximum of the well flux equations for each phase.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
inline
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
std::vector<double>& R_sum,
std::vector<double>& maxCoeff,
std::vector<double>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int np,
const std::vector<double> pv,
std::vector<double> residual_well)
{
const int nw = residual_well.size() / np;
assert(nw * np == int(residual_well.size()));
// Do the global reductions
#if 0 // HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector<int> v(nc, 1);
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
auto nc_and_pv_containers = std::make_tuple(v, pv);
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx = 0; idx < np; ++idx )
{
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalMaxFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
}
}
}
info.communicator().max(maxNormWell.data(), np);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
B_avg.resize(np);
maxCoeff.resize(np);
R_sum.resize(np);
maxNormWell.resize(np);
for ( int idx = 0; idx < np; ++idx )
{
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
}
}
}
// Compute total pore volume
return std::accumulate(pv.begin(), pv.end(), 0.0);
}
}
/// \brief Compute the L-infinity norm of a vector representing a well equation.
/// \param a The container to compute the infinity norm on.
/// \param info In a parallel this holds the information about the data distribution.