mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Added documentation for AutoDiffMatrix
This commit is contained in:
@@ -158,7 +158,7 @@ namespace Opm
|
||||
}
|
||||
// ... then set the one corrresponding to this variable to identity.
|
||||
assert(blocksizes[index] == num_elem);
|
||||
jac[index] = M(M::IdentityMatrix, val.size());
|
||||
jac[index] = M::createIdentity(val.size());
|
||||
return AutoDiffBlock(std::move(val), std::move(jac));
|
||||
}
|
||||
|
||||
|
||||
@@ -35,6 +35,11 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/**
|
||||
* AutoDiffMatrix is a wrapper class that optimizes matrix operations.
|
||||
* Internally, an AutoDiffMatrix can be either Zero, Identity, Diagonal,
|
||||
* or Sparse, and we utilize this to perform faster matrix operations.
|
||||
*/
|
||||
class AutoDiffMatrix
|
||||
{
|
||||
public:
|
||||
@@ -42,6 +47,9 @@ namespace Opm
|
||||
typedef Eigen::SparseMatrix<double> SparseRep;
|
||||
|
||||
|
||||
/**
|
||||
* Creates an empty zero matrix
|
||||
*/
|
||||
AutoDiffMatrix()
|
||||
: type_(Zero),
|
||||
rows_(0),
|
||||
@@ -52,7 +60,9 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Creates a zero matrix with num_rows x num_cols entries
|
||||
*/
|
||||
AutoDiffMatrix(const int num_rows, const int num_cols)
|
||||
: type_(Zero),
|
||||
rows_(num_rows),
|
||||
@@ -78,6 +88,9 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Creates a diagonal matrix from an Eigen diagonal matrix
|
||||
*/
|
||||
explicit AutoDiffMatrix(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& d)
|
||||
: type_(Diagonal),
|
||||
rows_(d.rows()),
|
||||
@@ -90,6 +103,9 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Creates a sparse matrix from an Eigen sparse matrix
|
||||
*/
|
||||
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
|
||||
: type_(Sparse),
|
||||
rows_(s.rows()),
|
||||
@@ -137,6 +153,12 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Adds two AutoDiffMatrices. Internally, this function optimizes
|
||||
* the addition operation based on the structure of the matrix, e.g.,
|
||||
* adding two zero matrices will obviously yield a zero matrix, and
|
||||
* so on.
|
||||
*/
|
||||
AutoDiffMatrix operator+(const AutoDiffMatrix& rhs) const
|
||||
{
|
||||
assert(rows_ == rhs.rows_);
|
||||
@@ -188,6 +210,16 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Multiplies two AutoDiffMatrices. Internally, this function optimizes
|
||||
* the multiplication operation based on the structure of the matrix, e.g.,
|
||||
* multiplying M with a zero matrix will obviously yield a zero matrix.
|
||||
*/
|
||||
AutoDiffMatrix operator*(const AutoDiffMatrix& rhs) const
|
||||
{
|
||||
assert(cols_ == rhs.rows_);
|
||||
@@ -255,6 +287,11 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Multiplies an AutoDiffMatrix with a scalar. Optimizes internally
|
||||
* by exploiting that e.g., an identity matrix multiplied by a scalar x
|
||||
* yields a diagonal matrix with x the diagonal.
|
||||
*/
|
||||
AutoDiffMatrix operator*(const double rhs) const
|
||||
{
|
||||
switch (type_) {
|
||||
@@ -291,6 +328,11 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Divides an AutoDiffMatrix by a scalar. Optimizes internally
|
||||
* by exploiting that e.g., an identity matrix divided by a scalar x
|
||||
* yields a diagonal matrix with 1/x on the diagonal.
|
||||
*/
|
||||
AutoDiffMatrix operator/(const double rhs) const
|
||||
{
|
||||
switch (type_) {
|
||||
@@ -327,6 +369,11 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Multiplies an AutoDiffMatrix with a vector. Optimizes internally
|
||||
* by exploiting that e.g., an identity matrix multiplied by a vector
|
||||
* yields the vector itself.
|
||||
*/
|
||||
Eigen::VectorXd operator*(const Eigen::VectorXd& rhs) const
|
||||
{
|
||||
assert(cols_ == rhs.size());
|
||||
@@ -351,7 +398,7 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
// Add identity to identity
|
||||
static AutoDiffMatrix addII(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Identity);
|
||||
@@ -364,6 +411,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Add diagonal to identity
|
||||
static AutoDiffMatrix addDI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
static_cast<void>(rhs); // Silence release-mode warning.
|
||||
@@ -376,6 +424,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Add diagonal to diagonal
|
||||
static AutoDiffMatrix addDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Diagonal);
|
||||
@@ -387,6 +436,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Add sparse to identity
|
||||
static AutoDiffMatrix addSI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
static_cast<void>(rhs); // Silence release-mode warning.
|
||||
@@ -397,6 +447,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Add sparse to diagonal
|
||||
static AutoDiffMatrix addSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Sparse);
|
||||
@@ -406,6 +457,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Add sparse to sparse
|
||||
static AutoDiffMatrix addSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Sparse);
|
||||
@@ -418,7 +470,7 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
// Multiply diagonal with diagonal
|
||||
static AutoDiffMatrix mulDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Diagonal);
|
||||
@@ -430,6 +482,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Multiply diagonal with sparse
|
||||
static AutoDiffMatrix mulDS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Diagonal);
|
||||
@@ -442,6 +495,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Multiply sparse with diagonal
|
||||
static AutoDiffMatrix mulSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Sparse);
|
||||
@@ -454,6 +508,7 @@ namespace Opm
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Multiply sparse with sparse
|
||||
static AutoDiffMatrix mulSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
assert(lhs.type_ == Sparse);
|
||||
@@ -467,6 +522,13 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Converts the AutoDiffMatrix to an Eigen SparseMatrix.This might be
|
||||
* an expensive operation to perform for e.g., an identity matrix or a
|
||||
* diagonal matrix.
|
||||
*/
|
||||
template<class Scalar, int Options, class Index>
|
||||
void toSparse(Eigen::SparseMatrix<Scalar, Options, Index>& s) const
|
||||
{
|
||||
@@ -487,16 +549,33 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns number of rows in the matrix
|
||||
*/
|
||||
int rows() const
|
||||
{
|
||||
return rows_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns number of columns in the matrix
|
||||
*/
|
||||
int cols() const
|
||||
{
|
||||
return cols_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns number of non-zero elements in the matrix. Optimizes internally
|
||||
* by exploiting that e.g., an n*n identity matrix has n non-zeros.
|
||||
* Note that an n*n diagonal matrix is defined to have n non-zeros, even though
|
||||
* several diagonal elements might be 0.0.
|
||||
*/
|
||||
int nonZeros() const
|
||||
{
|
||||
switch (type_) {
|
||||
@@ -514,6 +593,11 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns element (row, col) in the matrix
|
||||
*/
|
||||
double coeff(const int row, const int col) const
|
||||
{
|
||||
switch (type_) {
|
||||
@@ -547,12 +631,57 @@ namespace Opm
|
||||
|
||||
private:
|
||||
enum AudoDiffMatrixType { Zero, Identity, Diagonal, Sparse };
|
||||
AudoDiffMatrixType type_;
|
||||
int rows_;
|
||||
int cols_;
|
||||
DiagRep diag_;
|
||||
SparseRep sparse_;
|
||||
|
||||
AudoDiffMatrixType type_; //< Type of matrix
|
||||
int rows_; //< Number of rows
|
||||
int cols_; //< Number of columns
|
||||
DiagRep diag_; //< Diagonal representation (only if type==Diagonal)
|
||||
SparseRep sparse_; //< Sparse representation (only if type==Sparse)
|
||||
|
||||
/**
|
||||
* Returns the sparse representation of this matrix. Note that this might
|
||||
* be an expensive operation to perform if the internal structure is not
|
||||
* sparse.
|
||||
*/
|
||||
const Sparse& getSparse() const {
|
||||
if (type_ != S) {
|
||||
/**
|
||||
* If we are not a sparse matrix, our internal variable sparse_
|
||||
* is undefined, and hence changing it so that it happens to be
|
||||
* a sparse representation of our true data does not change our
|
||||
* true data, and hence justifies that we do not really violate
|
||||
* the const qualifier.
|
||||
*/
|
||||
Sparse& mutable_sparse = const_cast<Sparse&>(sparse_);
|
||||
toSparse(mutable_sparse);
|
||||
}
|
||||
return sparse_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Constructor which sets all members
|
||||
*/
|
||||
AutoDiffMatrix(MatrixType type, int rows, int cols,
|
||||
Diag diag=Diag(), Sparse sparse=Sparse())
|
||||
: type_(type),
|
||||
rows_(rows),
|
||||
cols_(cols),
|
||||
diag_(diag),
|
||||
sparse_(sparse)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Creates a sparse diagonal matrix from d.
|
||||
* Typical use is to convert a standard vector to an
|
||||
* Eigen sparse matrix.
|
||||
*/
|
||||
template <class V>
|
||||
static inline
|
||||
SparseRep
|
||||
@@ -574,19 +703,27 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Utility function to lessen code changes required elsewhere.
|
||||
*/
|
||||
inline void fastSparseProduct(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
|
||||
{
|
||||
res = lhs * rhs;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Utility function to lessen code changes required elsewhere.
|
||||
*/
|
||||
inline void fastSparseProduct(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
|
||||
{
|
||||
res = AutoDiffMatrix(lhs) * rhs;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Multiplies an Eigen sparse matrix with an AutoDiffMatrix.
|
||||
*/
|
||||
inline AutoDiffMatrix operator*(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs)
|
||||
{
|
||||
AutoDiffMatrix retval;
|
||||
|
||||
Reference in New Issue
Block a user