mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-02 13:59:12 -06:00
Remove unused file.
Content was added to fvbaselinearizer.hh.
This commit is contained in:
parent
4764d174b2
commit
4aa4788740
@ -1,729 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FvBaseLinearizer
|
||||
*/
|
||||
#ifndef EWOMS_LINEARIZER_TPFA_HH
|
||||
#define EWOMS_LINEARIZER_TPFA_HH
|
||||
|
||||
#include "fvbaseproperties.hh"
|
||||
#include "linearizationtype.hh"
|
||||
|
||||
#include <opm/models/parallel/gridcommhandles.hh>
|
||||
#include <opm/models/parallel/threadmanager.hh>
|
||||
#include <opm/models/parallel/threadedentityiterator.hh>
|
||||
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
||||
|
||||
#include <opm/material/common/Exceptions.hpp>
|
||||
|
||||
#include <dune/common/version.hh>
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
#include <opm/grid/utility/SparseTable.hpp>
|
||||
|
||||
#include <type_traits>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <set>
|
||||
#include <exception> // current_exception, rethrow_exception
|
||||
#include <mutex>
|
||||
|
||||
namespace Opm {
|
||||
// forward declarations
|
||||
template<class TypeTag>
|
||||
class EcfvDiscretization;
|
||||
|
||||
/*!
|
||||
* \ingroup FiniteVolumeDiscretizations
|
||||
*
|
||||
* \brief The common code for the linearizers of non-linear systems of equations
|
||||
*
|
||||
* This class assumes that these system of equations to be linearized are stemming from
|
||||
* models that use an finite volume scheme for spatial discretization and an Euler
|
||||
* scheme for time discretization.
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class LinearizerTPFA
|
||||
{
|
||||
//! \cond SKIP_THIS
|
||||
using Model = GetPropType<TypeTag, Properties::Model>;
|
||||
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
|
||||
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
|
||||
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
||||
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
||||
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
||||
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
||||
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
using GridCommHandleFactory = GetPropType<TypeTag, Properties::GridCommHandleFactory>;
|
||||
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
||||
|
||||
using Vector = GlobalEqVector;
|
||||
|
||||
using IstlMatrix = typename SparseMatrixAdapter::IstlMatrix;
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
||||
|
||||
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
|
||||
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
||||
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
|
||||
//Dune::FieldVector<Evaluation, numEq>;
|
||||
|
||||
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
||||
|
||||
// copying the linearizer is not a good idea
|
||||
LinearizerTPFA(const LinearizerTPFA&);
|
||||
//! \endcond
|
||||
|
||||
public:
|
||||
LinearizerTPFA()
|
||||
: jacobian_()
|
||||
{
|
||||
simulatorPtr_ = 0;
|
||||
}
|
||||
|
||||
~LinearizerTPFA()
|
||||
{
|
||||
auto it = elementCtx_.begin();
|
||||
const auto& endIt = elementCtx_.end();
|
||||
for (; it != endIt; ++it)
|
||||
delete *it;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the Jacobian linearizer.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{ }
|
||||
|
||||
/*!
|
||||
* \brief Initialize the linearizer.
|
||||
*
|
||||
* At this point we can assume that all objects in the simulator
|
||||
* have been allocated. We cannot assume that they are fully
|
||||
* initialized, though.
|
||||
*
|
||||
* \copydetails Doxygen::simulatorParam
|
||||
*/
|
||||
void init(Simulator& simulator)
|
||||
{
|
||||
simulatorPtr_ = &simulator;
|
||||
eraseMatrix();
|
||||
auto it = elementCtx_.begin();
|
||||
const auto& endIt = elementCtx_.end();
|
||||
for (; it != endIt; ++it){
|
||||
delete *it;
|
||||
}
|
||||
elementCtx_.resize(0);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
|
||||
* iteration.
|
||||
*
|
||||
* This method is usally called if the sparsity pattern has changed for some
|
||||
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
|
||||
*/
|
||||
void eraseMatrix()
|
||||
{
|
||||
jacobian_.reset();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Linearize the full system of non-linear equations.
|
||||
*
|
||||
* The linearizationType() controls the scheme used and the focus
|
||||
* time index. The default is fully implicit scheme, and focus index
|
||||
* equal to 0, i.e. current time (end of step).
|
||||
*
|
||||
* This linearizes the spatial domain and all auxiliary equations.
|
||||
*/
|
||||
void linearize()
|
||||
{
|
||||
linearizeDomain();
|
||||
linearizeAuxiliaryEquations();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Linearize the part of the non-linear system of equations that is associated
|
||||
* with the spatial domain.
|
||||
*
|
||||
* That means that the global Jacobian of the residual is assembled and the residual
|
||||
* is evaluated for the current solution.
|
||||
*
|
||||
* The current state of affairs (esp. the previous and the current solutions) is
|
||||
* represented by the model object.
|
||||
*/
|
||||
void linearizeDomain()
|
||||
{
|
||||
// we defer the initialization of the Jacobian matrix until here because the
|
||||
// auxiliary modules usually assume the problem, model and grid to be fully
|
||||
// initialized...
|
||||
if (!jacobian_)
|
||||
initFirstIteration_();
|
||||
|
||||
int succeeded;
|
||||
try {
|
||||
//linearize_();
|
||||
linearizeGlobalTPFA_();
|
||||
succeeded = 1;
|
||||
}
|
||||
catch (const std::exception& e)
|
||||
{
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing:" << e.what()
|
||||
<< "\n" << std::flush;
|
||||
succeeded = 0;
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing"
|
||||
<< "\n" << std::flush;
|
||||
succeeded = 0;
|
||||
}
|
||||
succeeded = gridView_().comm().min(succeeded);
|
||||
|
||||
if (!succeeded)
|
||||
throw NumericalIssue("A process did not succeed in linearizing the system");
|
||||
}
|
||||
|
||||
void finalize()
|
||||
{ jacobian_->finalize(); }
|
||||
|
||||
/*!
|
||||
* \brief Linearize the part of the non-linear system of equations that is associated
|
||||
* with the spatial domain.
|
||||
*/
|
||||
void linearizeAuxiliaryEquations()
|
||||
{
|
||||
// flush possible local caches into matrix structure
|
||||
jacobian_->commit();
|
||||
|
||||
auto& model = model_();
|
||||
const auto& comm = simulator_().gridView().comm();
|
||||
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
|
||||
bool succeeded = true;
|
||||
try {
|
||||
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
succeeded = false;
|
||||
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing:" << e.what()
|
||||
<< "\n" << std::flush;
|
||||
}
|
||||
|
||||
succeeded = comm.min(succeeded);
|
||||
|
||||
if (!succeeded)
|
||||
throw NumericalIssue("linearization of an auxiliary equation failed");
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return constant reference to global Jacobian matrix backend.
|
||||
*/
|
||||
const SparseMatrixAdapter& jacobian() const
|
||||
{ return *jacobian_; }
|
||||
|
||||
SparseMatrixAdapter& jacobian()
|
||||
{ return *jacobian_; }
|
||||
|
||||
/*!
|
||||
* \brief Return constant reference to global residual vector.
|
||||
*/
|
||||
const GlobalEqVector& residual() const
|
||||
{ return residual_; }
|
||||
|
||||
GlobalEqVector& residual()
|
||||
{ return residual_; }
|
||||
|
||||
void setLinearizationType(LinearizationType linearizationType){
|
||||
linearizationType_ = linearizationType;
|
||||
};
|
||||
|
||||
const LinearizationType& getLinearizationType() const{
|
||||
return linearizationType_;
|
||||
};
|
||||
|
||||
/*!
|
||||
* \brief Returns the map of constraint degrees of freedom.
|
||||
*
|
||||
* (This object is only non-empty if the EnableConstraints property is true.)
|
||||
*/
|
||||
const std::map<unsigned, Constraints>& constraintsMap() const
|
||||
{ return constraintsMap_; }
|
||||
|
||||
private:
|
||||
Simulator& simulator_()
|
||||
{ return *simulatorPtr_; }
|
||||
const Simulator& simulator_() const
|
||||
{ return *simulatorPtr_; }
|
||||
|
||||
Problem& problem_()
|
||||
{ return simulator_().problem(); }
|
||||
const Problem& problem_() const
|
||||
{ return simulator_().problem(); }
|
||||
|
||||
Model& model_()
|
||||
{ return simulator_().model(); }
|
||||
const Model& model_() const
|
||||
{ return simulator_().model(); }
|
||||
|
||||
const GridView& gridView_() const
|
||||
{ return problem_().gridView(); }
|
||||
|
||||
const ElementMapper& elementMapper_() const
|
||||
{ return model_().elementMapper(); }
|
||||
|
||||
const DofMapper& dofMapper_() const
|
||||
{ return model_().dofMapper(); }
|
||||
|
||||
void initFirstIteration_()
|
||||
{
|
||||
// initialize the BCRS matrix for the Jacobian of the residual function
|
||||
createMatrix_();
|
||||
|
||||
// initialize the Jacobian matrix and the vector for the residual function
|
||||
residual_.resize(model_().numTotalDof());
|
||||
resetSystem_();
|
||||
|
||||
// create the per-thread context objects
|
||||
elementCtx_.resize(ThreadManager::maxThreads());
|
||||
for (unsigned threadId = 0; threadId != ThreadManager::maxThreads(); ++ threadId)
|
||||
elementCtx_[threadId] = new ElementContext(simulator_());
|
||||
}
|
||||
|
||||
// Construct the BCRS matrix for the Jacobian of the residual function
|
||||
void createMatrix_()
|
||||
{
|
||||
const auto& model = model_();
|
||||
Stencil stencil(gridView_(), model_().dofMapper());
|
||||
|
||||
// for the main model, find out the global indices of the neighboring degrees of
|
||||
// freedom of each primary degree of freedom
|
||||
using NeighborSet = std::set< unsigned >;
|
||||
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
|
||||
|
||||
ElementIterator elemIt = gridView_().template begin<0>();
|
||||
const ElementIterator elemEndIt = gridView_().template end<0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const Element& elem = *elemIt;
|
||||
stencil.update(elem);
|
||||
|
||||
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
||||
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
||||
|
||||
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
||||
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
||||
sparsityPattern[myIdx].insert(neighborIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
||||
// equations
|
||||
auto reservoirSparsityPattern = sparsityPattern;
|
||||
size_t numAuxMod = model.numAuxiliaryModules();
|
||||
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
|
||||
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
|
||||
|
||||
// allocate raw matrix
|
||||
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
|
||||
|
||||
// create matrix structure based on sparsity pattern
|
||||
jacobian_->reserve(sparsityPattern);
|
||||
//neighbours_ = sparsityPattern;
|
||||
for(unsigned globI= 0; globI < model.numTotalDof(); globI++){
|
||||
reservoirSparsityPattern[globI].erase(globI);
|
||||
}
|
||||
unsigned numCells = model.numTotalDof();
|
||||
neighbours_.reserve(numCells,6*numCells);
|
||||
trans_.reserve(numCells,6*numCells);
|
||||
std::vector<double> loctrans;
|
||||
for(unsigned globI= 0; globI < numCells; globI++){
|
||||
const auto& cells = reservoirSparsityPattern[globI];
|
||||
neighbours_.appendRow(cells.begin(),cells.end());
|
||||
unsigned n = cells.size();
|
||||
loctrans.resize(n);
|
||||
short loc = 0;
|
||||
for(const int& cell : cells){
|
||||
loctrans[loc] = problem_().transmissibility(globI, cell);
|
||||
loc ++;
|
||||
}
|
||||
trans_.appendRow(loctrans.begin(),loctrans.end());
|
||||
}
|
||||
}
|
||||
|
||||
// reset the global linear system of equations.
|
||||
void resetSystem_()
|
||||
{
|
||||
residual_ = 0.0;
|
||||
// zero all matrix entries
|
||||
jacobian_->clear();
|
||||
}
|
||||
|
||||
// query the problem for all constraint degrees of freedom. note that this method is
|
||||
// quite involved and is thus relatively slow.
|
||||
void updateConstraintsMap_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
// constraints are not explictly enabled, so we don't need to consider them!
|
||||
return;
|
||||
|
||||
constraintsMap_.clear();
|
||||
|
||||
// loop over all elements...
|
||||
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_());
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
unsigned threadId = ThreadManager::threadId();
|
||||
ElementIterator elemIt = threadedElemIt.beginParallel();
|
||||
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
|
||||
// create an element context (the solution-based quantities are not
|
||||
// available here!)
|
||||
const Element& elem = *elemIt;
|
||||
ElementContext& elemCtx = *elementCtx_[threadId];
|
||||
elemCtx.updateStencil(elem);
|
||||
|
||||
// check if the problem wants to constrain any degree of the current
|
||||
// element's freedom. if yes, add the constraint to the map.
|
||||
for (unsigned primaryDofIdx = 0;
|
||||
primaryDofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
++ primaryDofIdx)
|
||||
{
|
||||
Constraints constraints;
|
||||
elemCtx.problem().constraints(constraints,
|
||||
elemCtx,
|
||||
primaryDofIdx,
|
||||
/*timeIdx=*/0);
|
||||
if (constraints.isActive()) {
|
||||
unsigned globI = elemCtx.globalSpaceIndex(primaryDofIdx, /*timeIdx=*/0);
|
||||
constraintsMap_[globI] = constraints;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
void setResAndJacobi(VectorBlock& res,MatrixBlock& bMat,const ADVectorBlock& resid) const{
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
|
||||
res[eqIdx] = resid[eqIdx].value();
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
|
||||
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
|
||||
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
|
||||
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
|
||||
// with regard to the focus variable 'pvIdx' of the degree of freedom
|
||||
// 'focusDofIdx'
|
||||
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
private:
|
||||
void linearizeGlobalTPFA_()
|
||||
{
|
||||
const bool well_local = false;
|
||||
resetSystem_();
|
||||
unsigned numCells = model_().numTotalDof();
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for(unsigned globI = 0; globI < numCells; globI++){
|
||||
const auto& neighbours = neighbours_[globI];// this is a set but should maybe be changed
|
||||
// accumulation term
|
||||
double dt = simulator_().timeStepSize();
|
||||
double volume = model_().dofTotalVolume(globI);
|
||||
Scalar storefac = volume/dt;
|
||||
ADVectorBlock adres(0.0);
|
||||
const IntensiveQuantities* intQuantsInP = model_().cachedIntensiveQuantities(globI, /*timeIdx*/0);
|
||||
assert(intQuantsInP);
|
||||
const IntensiveQuantities& intQuantsIn = *intQuantsInP;
|
||||
//intensiveQuantity(globI, 0);
|
||||
LocalResidual::computeStorage(adres,intQuantsIn, 0);
|
||||
adres *= storefac;
|
||||
VectorBlock res (0.0);
|
||||
MatrixBlock bMat(0.0);
|
||||
setResAndJacobi(res,bMat, adres);
|
||||
// first we use it as storage cache
|
||||
if (model_().newtonMethod().numIterations() == 0){
|
||||
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
|
||||
}
|
||||
residual_[globI] -= model_().cachedStorage(globI, 1);//*storefac;
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
// wells sources for now (should be moved out)
|
||||
if(well_local){
|
||||
res = 0.0;
|
||||
bMat = 0.0;
|
||||
adres = 0.0;
|
||||
LocalResidual::computeSource(adres, problem_(), globI, 0);
|
||||
adres *= -volume;
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
}
|
||||
short loc = 0;
|
||||
for(const auto& globJ: neighbours){
|
||||
assert(globJ != globI);
|
||||
res = 0.0;
|
||||
bMat = 0.0;
|
||||
adres = 0.0;
|
||||
const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/0);
|
||||
assert(intQuantsExP);
|
||||
const IntensiveQuantities& intQuantsEx = *intQuantsExP;
|
||||
unsigned globalFocusDofIdx = globI;
|
||||
LocalResidual::computeFlux(adres,
|
||||
problem_(),
|
||||
globalFocusDofIdx,
|
||||
globI,
|
||||
globJ,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
0);
|
||||
adres *= trans_[globI][loc];
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
bMat *= -1.0;
|
||||
jacobian_->addToBlock(globJ, globI, bMat);
|
||||
loc ++;
|
||||
}
|
||||
|
||||
}
|
||||
if(not(well_local)){
|
||||
problem_().wellModel().addReseroirSourceTerms(residual_,*jacobian_);
|
||||
}
|
||||
// before the first iteration of each time step, we need to update the
|
||||
// constraints. (i.e., we assume that constraints can be time dependent, but they
|
||||
// can't depend on the solution.)
|
||||
}
|
||||
|
||||
|
||||
// linearize the whole system
|
||||
void linearize_()
|
||||
{
|
||||
resetSystem_();
|
||||
|
||||
// before the first iteration of each time step, we need to update the
|
||||
// constraints. (i.e., we assume that constraints can be time dependent, but they
|
||||
// can't depend on the solution.)
|
||||
if (model_().newtonMethod().numIterations() == 0)
|
||||
updateConstraintsMap_();
|
||||
|
||||
applyConstraintsToSolution_();
|
||||
|
||||
// to avoid a race condition if two threads handle an exception at the same time,
|
||||
// we use an explicit lock to control access to the exception storage object
|
||||
// amongst thread-local handlers
|
||||
std::mutex exceptionLock;
|
||||
|
||||
// storage to any exception that needs to be bridged out of the
|
||||
// parallel block below. initialized to null to indicate no exception
|
||||
std::exception_ptr exceptionPtr = nullptr;
|
||||
|
||||
// relinearize the elements...
|
||||
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_());
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
ElementIterator elemIt = threadedElemIt.beginParallel();
|
||||
ElementIterator nextElemIt = elemIt;
|
||||
try {
|
||||
for (; !threadedElemIt.isFinished(elemIt); elemIt = nextElemIt) {
|
||||
// give the model and the problem a chance to prefetch the data required
|
||||
// to linearize the next element, but only if we need to consider it
|
||||
nextElemIt = threadedElemIt.increment();
|
||||
if (!threadedElemIt.isFinished(nextElemIt)) {
|
||||
const auto& nextElem = *nextElemIt;
|
||||
if (linearizeNonLocalElements
|
||||
|| nextElem.partitionType() == Dune::InteriorEntity)
|
||||
{
|
||||
model_().prefetch(nextElem);
|
||||
problem_().prefetch(nextElem);
|
||||
}
|
||||
}
|
||||
|
||||
const Element& elem = *elemIt;
|
||||
if (!linearizeNonLocalElements && elem.partitionType() != Dune::InteriorEntity)
|
||||
continue;
|
||||
|
||||
linearizeElement_(elem);
|
||||
}
|
||||
}
|
||||
// If an exception occurs in the parallel block, it won't escape the
|
||||
// block; terminate() is called instead of a handler outside! hence, we
|
||||
// tuck any exceptions that occur away in the pointer. If an exception
|
||||
// occurs in more than one thread at the same time, we must pick one of
|
||||
// them to be rethrown as we cannot have two active exceptions at the
|
||||
// same time. This solution essentially picks one at random. This will
|
||||
// only be a problem if two different kinds of exceptions are thrown, for
|
||||
// instance if one thread experiences a (recoverable) numerical issue
|
||||
// while another is out of memory.
|
||||
catch(...) {
|
||||
std::lock_guard<std::mutex> take(exceptionLock);
|
||||
exceptionPtr = std::current_exception();
|
||||
threadedElemIt.setFinished();
|
||||
}
|
||||
} // parallel block
|
||||
|
||||
// after reduction from the parallel block, exceptionPtr will point to
|
||||
// a valid exception if one occurred in one of the threads; rethrow
|
||||
// it here to let the outer handler take care of it properly
|
||||
if(exceptionPtr) {
|
||||
std::rethrow_exception(exceptionPtr);
|
||||
}
|
||||
|
||||
applyConstraintsToLinearization_();
|
||||
}
|
||||
|
||||
// linearize an element in the interior of the process' grid partition
|
||||
void linearizeElement_(const Element& elem)
|
||||
{
|
||||
unsigned threadId = ThreadManager::threadId();
|
||||
|
||||
ElementContext *elementCtx = elementCtx_[threadId];
|
||||
auto& localLinearizer = model_().localLinearizer(threadId);
|
||||
|
||||
// the actual work of linearization is done by the local linearizer class
|
||||
localLinearizer.linearize(*elementCtx, elem);
|
||||
|
||||
// update the right hand side and the Jacobian matrix
|
||||
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
||||
globalMatrixMutex_.lock();
|
||||
|
||||
size_t numPrimaryDof = elementCtx->numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned primaryDofIdx = 0; primaryDofIdx < numPrimaryDof; ++ primaryDofIdx) {
|
||||
unsigned globI = elementCtx->globalSpaceIndex(/*spaceIdx=*/primaryDofIdx, /*timeIdx=*/0);
|
||||
|
||||
// update the right hand side
|
||||
residual_[globI] += localLinearizer.residual(primaryDofIdx);
|
||||
|
||||
// update the global Jacobian matrix
|
||||
for (unsigned dofIdx = 0; dofIdx < elementCtx->numDof(/*timeIdx=*/0); ++ dofIdx) {
|
||||
unsigned globJ = elementCtx->globalSpaceIndex(/*spaceIdx=*/dofIdx, /*timeIdx=*/0);
|
||||
|
||||
jacobian_->addToBlock(globJ, globI, localLinearizer.jacobian(dofIdx, primaryDofIdx));
|
||||
}
|
||||
}
|
||||
|
||||
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
||||
globalMatrixMutex_.unlock();
|
||||
}
|
||||
|
||||
// apply the constraints to the solution. (i.e., the solution of constraint degrees
|
||||
// of freedom is set to the value of the constraint.)
|
||||
void applyConstraintsToSolution_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
return;
|
||||
|
||||
// TODO: assuming a history size of 2 only works for Euler time discretizations!
|
||||
auto& sol = model_().solution(/*timeIdx=*/0);
|
||||
auto& oldSol = model_().solution(/*timeIdx=*/1);
|
||||
|
||||
auto it = constraintsMap_.begin();
|
||||
const auto& endIt = constraintsMap_.end();
|
||||
for (; it != endIt; ++it) {
|
||||
sol[it->first] = it->second;
|
||||
oldSol[it->first] = it->second;
|
||||
}
|
||||
}
|
||||
|
||||
// apply the constraints to the linearization. (i.e., for constrain degrees of
|
||||
// freedom the Jacobian matrix maps to identity and the residual is zero)
|
||||
void applyConstraintsToLinearization_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
return;
|
||||
|
||||
auto it = constraintsMap_.begin();
|
||||
const auto& endIt = constraintsMap_.end();
|
||||
for (; it != endIt; ++it) {
|
||||
unsigned constraintDofIdx = it->first;
|
||||
|
||||
// reset the column of the Jacobian matrix
|
||||
// put an identity matrix on the main diagonal of the Jacobian
|
||||
jacobian_->clearRow(constraintDofIdx, Scalar(1.0));
|
||||
|
||||
// make the right-hand side of constraint DOFs zero
|
||||
residual_[constraintDofIdx] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
static bool enableConstraints_()
|
||||
{ return getPropValue<TypeTag, Properties::EnableConstraints>(); }
|
||||
|
||||
Simulator *simulatorPtr_;
|
||||
std::vector<ElementContext*> elementCtx_;
|
||||
|
||||
// The constraint equations (only non-empty if the
|
||||
// EnableConstraints property is true)
|
||||
std::map<unsigned, Constraints> constraintsMap_;
|
||||
|
||||
// the jacobian matrix
|
||||
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
||||
|
||||
// the right-hand side
|
||||
GlobalEqVector residual_;
|
||||
|
||||
LinearizationType linearizationType_;
|
||||
|
||||
std::mutex globalMatrixMutex_;
|
||||
//using NeighborSet = std::set< unsigned >;
|
||||
//std::vector< std::vector<int>>
|
||||
SparseTable<unsigned> neighbours_;
|
||||
//std::vector< std::vector<double>> trans_;
|
||||
SparseTable<double> trans_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user