Merge pull request #2667 from atgeirr/flexible-solver-separate-compile-unit

Use explicit instantiation for FlexibleSolver to reduce compile times.
This commit is contained in:
Atgeirr Flø Rasmussen 2020-06-19 15:03:30 +02:00 committed by GitHub
commit 5105b80e50
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 455 additions and 130 deletions

View File

@ -28,6 +28,10 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/timestepping/SimulatorReport.cpp
opm/simulators/flow/MissingFeatures.cpp
opm/simulators/linalg/ExtractParallelGridInformationToISTL.cpp
opm/simulators/linalg/FlexibleSolver1.cpp
opm/simulators/linalg/FlexibleSolver2.cpp
opm/simulators/linalg/FlexibleSolver3.cpp
opm/simulators/linalg/FlexibleSolver4.cpp
opm/simulators/timestepping/TimeStepControl.cpp
opm/simulators/timestepping/AdaptiveSimulatorTimer.cpp
opm/simulators/timestepping/SimulatorTimer.cpp

View File

@ -1,5 +1,6 @@
/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2020 Equinor.
This file is part of the Open Porous Media project (OPM).
@ -21,7 +22,7 @@
#ifndef OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_HEADER_INCLUDED
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
@ -35,19 +36,6 @@
namespace Dune
{
template<class C>
struct IsComm : std::false_type
{};
template<>
struct IsComm<Dune::Amg::SequentialInformation> : std::true_type
{};
#if HAVE_MPI
template<class Index>
struct IsComm<Dune::OwnerOverlapCopyCommunication<Index>> : std::true_type
{};
#endif
/// A solver class that encapsulates all needed objects for a linear solver
/// (operator, scalar product, iterative solver and preconditioner) and sets
/// them up based on runtime parameters, using the PreconditionerFactory for
@ -60,52 +48,28 @@ public:
using VectorType = VectorTypeT;
/// Create a sequential solver.
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
const std::function<VectorTypeT()>& weightsCalculator = std::function<VectorTypeT()>())
{
init(prm, matrix, weightsCalculator, Dune::Amg::SequentialInformation());
}
FlexibleSolver(const MatrixType& matrix,
const boost::property_tree::ptree& prm,
const std::function<VectorTypeT()>& weightsCalculator = std::function<VectorTypeT()>());
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class Comm>
FlexibleSolver(const boost::property_tree::ptree& prm,
const MatrixType& matrix,
const typename std::enable_if<IsComm<Comm>::value, Comm>::type& comm)
{
init(prm, matrix, std::function<VectorTypeT()>(), comm);
}
FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<VectorTypeT()>& weightsCalculator = std::function<VectorTypeT()>());
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class Comm>
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
const std::function<VectorTypeT()>& weightsCalculator, const Comm& comm)
{
init(prm, matrix, weightsCalculator, comm);
}
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override;
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override
{
linsolver_->apply(x, rhs, res);
}
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override
{
linsolver_->apply(x, rhs, reduction, res);
}
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override;
/// Type of the contained preconditioner.
using AbstractPrecondType = Dune::PreconditionerWithUpdate<VectorType, VectorType>;
/// Access the contained preconditioner.
AbstractPrecondType& preconditioner()
{
return *preconditioner_;
}
AbstractPrecondType& preconditioner();
virtual Dune::SolverCategory::Category category() const override
{
return linearoperator_->category();
}
virtual Dune::SolverCategory::Category category() const override;
private:
using AbstractOperatorType = Dune::AssembledLinearOperator<MatrixType, VectorType, VectorType>;
@ -115,83 +79,20 @@ private:
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template <class Comm>
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm)
{
// Parallel case.
using ParOperatorType = Dune::OverlappingSchwarzOperator<MatrixType, VectorType, VectorType, Comm>;
using pt = const boost::property_tree::ptree;
auto linop = std::make_shared<ParOperatorType>(matrix, comm);
linearoperator_ = linop;
auto child = prm.get_child_optional("preconditioner");
preconditioner_
= Opm::PreconditionerFactory<ParOperatorType, Comm>::create(*linop, child? *child : pt(),
weightsCalculator, comm);
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, linearoperator_->category());
}
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm);
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
const std::function<VectorTypeT()> weightsCalculator, const Dune::Amg::SequentialInformation&)
{
// Sequential case.
using SeqOperatorType = Dune::MatrixAdapter<MatrixType, VectorType, VectorType>;
using pt = const boost::property_tree::ptree;
auto linop = std::make_shared<SeqOperatorType>(matrix);
linearoperator_ = linop;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory<SeqOperatorType>::create(*linop, child? *child : pt(),
weightsCalculator);
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
}
void initSolver(const boost::property_tree::ptree& prm, bool isMaster)
{
const double tol = prm.get<double>("tol", 1e-2);
const int maxiter = prm.get<int>("maxiter", 200);
const int verbosity = isMaster? prm.get<int>("verbosity", 0) : 0;
const std::string solver_type = prm.get<std::string>("solver", "bicgstab");
if (solver_type == "bicgstab") {
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "loopsolver") {
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "gmres") {
int restart = prm.get<int>("restart", 15);
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol,
restart, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
#if HAVE_SUITESPARSE_UMFPACK
} else if (solver_type == "umfpack") {
bool dummy = false;
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_->getmat(), verbosity, dummy));
#endif
} else {
OPM_THROW(std::invalid_argument, "Properties: Solver " << solver_type << " not known.");
}
}
const std::function<VectorTypeT()> weightsCalculator, const Dune::Amg::SequentialInformation&);
void initSolver(const boost::property_tree::ptree& prm, bool isMaster);
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template <class Comm>
void init(const boost::property_tree::ptree& prm, const MatrixType& matrix,
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm)
{
initOpPrecSp(matrix, prm, weightsCalculator, comm);
initSolver(prm, comm.communicator().rank()==0);
}
void init(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<VectorTypeT()> weightsCalculator);
std::shared_ptr<AbstractOperatorType> linearoperator_;
std::shared_ptr<AbstractPrecondType> preconditioner_;

View File

@ -0,0 +1,56 @@
/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/linalg/FlexibleSolver_impl.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
// Explicit instantiations of FlexibleSolver
template <int N>
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
template <int N>
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
template <int N>
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
// Variants using Dune::FieldMatrix blocks.
template class Dune::FlexibleSolver<BM<1>, BV<1>>;
// Variants using Opm::MatrixBlock blocks.
template class Dune::FlexibleSolver<OBM<1>, BV<1>>;
#if HAVE_MPI
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
template Dune::FlexibleSolver<OBM<1>, BV<1>>::FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<BV<1>()>& weightsCalculator);
#endif // HAVE_MPI

View File

@ -0,0 +1,56 @@
/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/linalg/FlexibleSolver_impl.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
// Explicit instantiations of FlexibleSolver
template <int N>
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
template <int N>
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
template <int N>
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
// Variants using Dune::FieldMatrix blocks.
template class Dune::FlexibleSolver<BM<2>, BV<2>>;
// Variants using Opm::MatrixBlock blocks.
template class Dune::FlexibleSolver<OBM<2>, BV<2>>;
#if HAVE_MPI
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
template Dune::FlexibleSolver<OBM<2>, BV<2>>::FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<BV<2>()>& weightsCalculator);
#endif // HAVE_MPI

View File

@ -0,0 +1,56 @@
/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/linalg/FlexibleSolver_impl.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
// Explicit instantiations of FlexibleSolver
template <int N>
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
template <int N>
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
template <int N>
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
// Variants using Dune::FieldMatrix blocks.
template class Dune::FlexibleSolver<BM<3>, BV<3>>;
// Variants using Opm::MatrixBlock blocks.
template class Dune::FlexibleSolver<OBM<3>, BV<3>>;
#if HAVE_MPI
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
template Dune::FlexibleSolver<OBM<3>, BV<3>>::FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<BV<3>()>& weightsCalculator);
#endif // HAVE_MPI

View File

@ -0,0 +1,56 @@
/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/linalg/FlexibleSolver_impl.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
// Explicit instantiations of FlexibleSolver
template <int N>
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
template <int N>
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
template <int N>
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
// Variants using Dune::FieldMatrix blocks.
template class Dune::FlexibleSolver<BM<4>, BV<4>>;
// Variants using Opm::MatrixBlock blocks.
template class Dune::FlexibleSolver<OBM<4>, BV<4>>;
#if HAVE_MPI
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
template Dune::FlexibleSolver<OBM<4>, BV<4>>::FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<BV<4>()>& weightsCalculator);
#endif // HAVE_MPI

View File

@ -0,0 +1,191 @@
/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2020 Equinor.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#include <opm/simulators/linalg/FlexibleSolver.hpp>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/umfpack.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/pinfo.hh>
#include <boost/property_tree/ptree.hpp>
namespace Dune
{
/// Create a sequential solver.
template <class MatrixType, class VectorType>
FlexibleSolver<MatrixType, VectorType>::
FlexibleSolver(const MatrixType& matrix,
const boost::property_tree::ptree& prm,
const std::function<VectorType()>& weightsCalculator)
{
init(matrix, Dune::Amg::SequentialInformation(), prm, weightsCalculator);
}
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template <class MatrixType, class VectorType>
template <class Comm>
FlexibleSolver<MatrixType, VectorType>::
FlexibleSolver(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<VectorType()>& weightsCalculator)
{
init(matrix, comm, prm, weightsCalculator);
}
template <class MatrixType, class VectorType>
void
FlexibleSolver<MatrixType, VectorType>::
apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res)
{
linsolver_->apply(x, rhs, res);
}
template <class MatrixType, class VectorType>
void
FlexibleSolver<MatrixType, VectorType>::
apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res)
{
linsolver_->apply(x, rhs, reduction, res);
}
/// Access the contained preconditioner.
template <class MatrixType, class VectorType>
auto
FlexibleSolver<MatrixType, VectorType>::
preconditioner() -> AbstractPrecondType&
{
return *preconditioner_;
}
template <class MatrixType, class VectorType>
Dune::SolverCategory::Category
FlexibleSolver<MatrixType, VectorType>::
category() const
{
return linearoperator_->category();
}
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template <class MatrixType, class VectorType>
template <class Comm>
void
FlexibleSolver<MatrixType, VectorType>::
initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
const std::function<VectorType()> weightsCalculator, const Comm& comm)
{
// Parallel case.
using ParOperatorType = Dune::OverlappingSchwarzOperator<MatrixType, VectorType, VectorType, Comm>;
using pt = const boost::property_tree::ptree;
auto linop = std::make_shared<ParOperatorType>(matrix, comm);
linearoperator_ = linop;
auto child = prm.get_child_optional("preconditioner");
preconditioner_
= Opm::PreconditionerFactory<ParOperatorType, Comm>::create(*linop, child? *child : pt(),
weightsCalculator, comm);
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, linearoperator_->category());
}
template <class MatrixType, class VectorType>
void
FlexibleSolver<MatrixType, VectorType>::
initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
const std::function<VectorType()> weightsCalculator, const Dune::Amg::SequentialInformation&)
{
// Sequential case.
using SeqOperatorType = Dune::MatrixAdapter<MatrixType, VectorType, VectorType>;
using pt = const boost::property_tree::ptree;
auto linop = std::make_shared<SeqOperatorType>(matrix);
linearoperator_ = linop;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory<SeqOperatorType>::create(*linop, child? *child : pt(),
weightsCalculator);
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
}
template <class MatrixType, class VectorType>
void
FlexibleSolver<MatrixType, VectorType>::
initSolver(const boost::property_tree::ptree& prm, bool isMaster)
{
const double tol = prm.get<double>("tol", 1e-2);
const int maxiter = prm.get<int>("maxiter", 200);
const int verbosity = isMaster? prm.get<int>("verbosity", 0) : 0;
const std::string solver_type = prm.get<std::string>("solver", "bicgstab");
if (solver_type == "bicgstab") {
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "loopsolver") {
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
} else if (solver_type == "gmres") {
int restart = prm.get<int>("restart", 15);
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_,
*scalarproduct_,
*preconditioner_,
tol,
restart, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
#if HAVE_SUITESPARSE_UMFPACK
} else if (solver_type == "umfpack") {
bool dummy = false;
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_->getmat(), verbosity, dummy));
#endif
} else {
OPM_THROW(std::invalid_argument, "Properties: Solver " << solver_type << " not known.");
}
}
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template <class MatrixType, class VectorType>
template <class Comm>
void
FlexibleSolver<MatrixType, VectorType>::
init(const MatrixType& matrix,
const Comm& comm,
const boost::property_tree::ptree& prm,
const std::function<VectorType()> weightsCalculator)
{
initOpPrecSp(matrix, prm, weightsCalculator, comm);
initSolver(prm, comm.communicator().rank()==0);
}
} // namespace Dune
#endif // OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED

View File

@ -905,10 +905,10 @@ protected:
if (isParallel()) {
#if HAVE_MPI
assert(noGhostMat_);
flexibleSolver_.reset(new FlexibleSolverType(prm_, *noGhostMat_, weightsCalculator, *comm_));
flexibleSolver_.reset(new FlexibleSolverType(*noGhostMat_, *comm_, prm_, weightsCalculator));
#endif
} else {
flexibleSolver_.reset(new FlexibleSolverType(prm_, *matrix_, weightsCalculator));
flexibleSolver_.reset(new FlexibleSolverType(*matrix_, prm_, weightsCalculator));
}
}
else

View File

@ -199,11 +199,11 @@ public:
if (isParallel()) {
#if HAVE_MPI
matrix_ = &mat.istlMatrix();
solver_.reset(new SolverType(prm_, mat.istlMatrix(), weightsCalculator, *comm_));
solver_.reset(new SolverType(mat.istlMatrix(), *comm_, prm_, weightsCalculator));
#endif
} else {
matrix_ = &mat.istlMatrix();
solver_.reset(new SolverType(prm_, mat.istlMatrix(), weightsCalculator));
solver_.reset(new SolverType(mat.istlMatrix(), prm_, weightsCalculator));
}
rhs_ = b;
} else {

View File

@ -60,12 +60,16 @@ namespace Amg
PressureInverseOperator(Operator& op, const boost::property_tree::ptree& prm, const Comm& comm)
: linsolver_()
{
if (op.category() == Dune::SolverCategory::overlapping) {
linsolver_.reset(new Solver(prm, op.getmat(), std::function<X()>(), comm));
} else {
linsolver_.reset(new Solver(prm, op.getmat(), std::function<X()>()));
}
assert(op.category() == Dune::SolverCategory::overlapping);
linsolver_.reset(new Solver(op.getmat(), comm, prm, std::function<X()>()));
}
PressureInverseOperator(Operator& op, const boost::property_tree::ptree& prm, const SequentialInformation&)
: linsolver_()
{
assert(op.category() != Dune::SolverCategory::overlapping);
linsolver_.reset(new Solver(op.getmat(), prm, std::function<X()>()));
}
Dune::SolverCategory::Category category() const override
{

View File

@ -29,6 +29,7 @@
BOOST_VERSION / 100 % 1000 > 48
#include <opm/simulators/linalg/FlexibleSolver.hpp>
#include <opm/simulators/linalg/getQuasiImpesWeights.hpp>
#include <boost/property_tree/json_parser.hpp>
#include <boost/property_tree/ptree.hpp>
@ -70,7 +71,7 @@ testSolver(const boost::property_tree::ptree& prm, const std::string& matrix_fil
prm.get<int>("preconditioner.pressure_var_index"),
transpose);
};
Dune::FlexibleSolver<Matrix, Vector> solver(prm, matrix, wc);
Dune::FlexibleSolver<Matrix, Vector> solver(matrix, prm, wc);
Vector x(rhs.size());
Dune::InverseOperatorResult res;
solver.apply(x, rhs, res);