mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #3810 from totto82/refactor_bhpFromThpLimit_1
Refactor bhp from thp limit
This commit is contained in:
commit
519b5dd8cc
@ -447,284 +447,7 @@ computeBhpAtThpLimitProdWithAlq(
|
||||
DeferredLogger& deferred_logger,
|
||||
double alq_value) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) should be returned.
|
||||
|
||||
static constexpr int Water = BlackoilPhases::Aqua;
|
||||
static constexpr int Oil = BlackoilPhases::Liquid;
|
||||
static constexpr int Gas = BlackoilPhases::Vapour;
|
||||
|
||||
// Make the fbhp() function.
|
||||
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
|
||||
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
||||
const double vfp_ref_depth = table.getDatumDepth();
|
||||
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
|
||||
auto fbhp = [this, &controls, thp_limit, dp, alq_value](
|
||||
const std::vector<double>& rates) {
|
||||
assert(rates.size() == 3);
|
||||
return baseif_.vfpProperties()->getProd()
|
||||
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
|
||||
};
|
||||
|
||||
// Make the flo() function.
|
||||
auto flo = [&table](const std::vector<double>& rates) {
|
||||
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
||||
};
|
||||
|
||||
// Find the bhp-point where production becomes nonzero.
|
||||
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
||||
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
|
||||
|
||||
// could not solve for the bhp-point, we could not continue to find the bhp
|
||||
if (!bhp_max.has_value()) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to not being able to "
|
||||
"find bhp-point where production becomes non-zero for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
// Define the equation we want to solve.
|
||||
auto eq = [&fbhp, &frates](double bhp) {
|
||||
return fbhp(frates(bhp)) - bhp;
|
||||
};
|
||||
|
||||
// Find appropriate brackets for the solution.
|
||||
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
|
||||
std::optional<double> approximate_solution;
|
||||
double low, high;
|
||||
// trying to use bisect way to locate a bracket
|
||||
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
|
||||
|
||||
// based on the origional design, if an approximate solution is suggested, we use this value directly
|
||||
// in the long run, we might change it
|
||||
if (approximate_solution.has_value()) {
|
||||
return *approximate_solution;
|
||||
}
|
||||
|
||||
if (!finding_bracket) {
|
||||
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
|
||||
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
|
||||
}
|
||||
|
||||
if (!finding_bracket) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to not being able to "
|
||||
"bracket the bhp solution with the brute force search for " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Solve for the proper solution in the given interval.
|
||||
const int max_iteration = 100;
|
||||
const double bhp_tolerance = 0.01 * unit::barsa;
|
||||
int iteration = 0;
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
||||
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
||||
return solved_bhp;
|
||||
}
|
||||
catch (...) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
std::optional<double>
|
||||
MultisegmentWellGeneric<Scalar>::
|
||||
bhpMax(const std::function<double(const double)>& fflo,
|
||||
const double bhp_limit,
|
||||
const double maxPerfPress,
|
||||
const double vfp_flo_front,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Find the bhp-point where production becomes nonzero.
|
||||
double bhp_max = 0.0;
|
||||
double low = bhp_limit;
|
||||
double high = maxPerfPress + 1.0 * unit::barsa;
|
||||
double f_low = fflo(low);
|
||||
double f_high = fflo(high);
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high));
|
||||
int adjustments = 0;
|
||||
const int max_adjustments = 10;
|
||||
const double adjust_amount = 5.0 * unit::barsa;
|
||||
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
||||
// Same sign, adjust high to see if we can flip it.
|
||||
high += adjust_amount;
|
||||
f_high = fflo(high);
|
||||
++adjustments;
|
||||
}
|
||||
if (f_low * f_high > 0.0) {
|
||||
if (f_low > 0.0) {
|
||||
// Even at the BHP limit, we are injecting.
|
||||
// There will be no solution here, return an
|
||||
// empty optional.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to inoperability for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
} else {
|
||||
// Still producing, even at high bhp.
|
||||
assert(f_high < 0.0);
|
||||
bhp_max = high;
|
||||
}
|
||||
} else {
|
||||
// Bisect to find a bhp point where we produce, but
|
||||
// not a large amount ('eps' below).
|
||||
const double eps = 0.1 * std::fabs(vfp_flo_front);
|
||||
const int maxit = 50;
|
||||
int it = 0;
|
||||
while (std::fabs(f_low) > eps && it < maxit) {
|
||||
const double curr = 0.5*(low + high);
|
||||
const double f_curr = fflo(curr);
|
||||
if (f_curr * f_low > 0.0) {
|
||||
low = curr;
|
||||
f_low = f_curr;
|
||||
} else {
|
||||
high = curr;
|
||||
f_high = f_curr;
|
||||
}
|
||||
++it;
|
||||
}
|
||||
if (it < maxit) {
|
||||
bhp_max = low;
|
||||
} else {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Bisect did not find the bhp-point where we produce for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high) +
|
||||
" bhp_max = " + std::to_string(bhp_max));
|
||||
return bhp_max;
|
||||
}
|
||||
|
||||
|
||||
template<typename Scalar>
|
||||
bool
|
||||
MultisegmentWellGeneric<Scalar>::
|
||||
bisectBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
std::optional<double>& approximate_solution,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
bool finding_bracket = false;
|
||||
low = range[0];
|
||||
high = range[1];
|
||||
|
||||
double eq_high = eq(high);
|
||||
double eq_low = eq(low);
|
||||
const double eq_bhplimit = eq_low;
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" eq(low) = " + std::to_string(eq_low) +
|
||||
" eq(high) = " + std::to_string(eq_high));
|
||||
if (eq_low * eq_high > 0.0) {
|
||||
// Failed to bracket the zero.
|
||||
// If this is due to having two solutions, bisect until bracketed.
|
||||
double abs_low = std::fabs(eq_low);
|
||||
double abs_high = std::fabs(eq_high);
|
||||
int bracket_attempts = 0;
|
||||
const int max_bracket_attempts = 20;
|
||||
double interval = high - low;
|
||||
const double min_interval = 1.0 * unit::barsa;
|
||||
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
||||
if (abs_high < abs_low) {
|
||||
low = 0.5 * (low + high);
|
||||
eq_low = eq(low);
|
||||
abs_low = std::fabs(eq_low);
|
||||
} else {
|
||||
high = 0.5 * (low + high);
|
||||
eq_high = eq(high);
|
||||
abs_high = std::fabs(eq_high);
|
||||
}
|
||||
++bracket_attempts;
|
||||
}
|
||||
|
||||
if (eq_low * eq_high <= 0.) {
|
||||
// We have a bracket!
|
||||
finding_bracket = true;
|
||||
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
||||
// If so, that is the bracket we shall use, choosing the solution with the
|
||||
// highest flow.
|
||||
if (eq_low * eq_bhplimit <= 0.0) {
|
||||
high = low;
|
||||
low = range[0];
|
||||
}
|
||||
} else { // eq_low * eq_high > 0.0
|
||||
// Still failed bracketing!
|
||||
const double limit = 3.0 * unit::barsa;
|
||||
if (std::min(abs_low, abs_high) < limit) {
|
||||
// Return the least bad solution if less off than 3 bar.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) not solved precisely for well " + baseif_.name());
|
||||
approximate_solution = abs_low < abs_high ? low : high;
|
||||
} else {
|
||||
// Return failure.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) solve failed due to bracketing failure for well " +
|
||||
baseif_.name());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
finding_bracket = true;
|
||||
}
|
||||
return finding_bracket;
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
bool
|
||||
MultisegmentWellGeneric<Scalar>::
|
||||
bruteForceBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
bool finding_bracket = false;
|
||||
low = range[0];
|
||||
high = range[1];
|
||||
const int sample_number = 100;
|
||||
const double interval = (high - low) / sample_number;
|
||||
double eq_low = eq(low);
|
||||
double eq_high;
|
||||
for (int i = 0; i < sample_number + 1; ++i) {
|
||||
high = range[0] + interval * i;
|
||||
eq_high = eq(high);
|
||||
if (eq_high * eq_low <= 0.) {
|
||||
finding_bracket = true;
|
||||
break;
|
||||
}
|
||||
low = high;
|
||||
eq_low = eq_high;
|
||||
}
|
||||
if (finding_bracket) {
|
||||
deferred_logger.debug(
|
||||
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
||||
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
||||
}
|
||||
return finding_bracket;
|
||||
return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, rho, alq_value, deferred_logger);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
|
@ -199,192 +199,10 @@ StandardWellGeneric<Scalar>::
|
||||
computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const double)>& frates,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger,
|
||||
double maxPerfPress,
|
||||
double alq_value) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) is returned.
|
||||
//
|
||||
// In order to detect these situations, we will find piecewise
|
||||
// linear approximations both to the inverse of the frates
|
||||
// function and to the fbhp function.
|
||||
//
|
||||
// We first take the FLO sample points of the VFP curve, and
|
||||
// find the corresponding bhp values by solving the equation:
|
||||
// flo(frates(bhp)) - flo_sample = 0
|
||||
// for bhp, for each flo_sample. The resulting (flo_sample,
|
||||
// bhp_sample) values give a piecewise linear approximation to
|
||||
// the true inverse inflow function, at the same flo values as
|
||||
// the VFP data.
|
||||
//
|
||||
// Then we extract a piecewise linear approximation from the
|
||||
// multilinear fbhp() by evaluating it at the flo_sample
|
||||
// points, with fractions given by the frates(bhp_sample)
|
||||
// values.
|
||||
//
|
||||
// When we have both piecewise linear curves defined on the
|
||||
// same flo_sample points, it is easy to distinguish between
|
||||
// the 0, 1 or 2 solution cases, and obtain the right interval
|
||||
// in which to solve for the solution we want (with highest
|
||||
// flow in case of 2 solutions).
|
||||
|
||||
static constexpr int Water = BlackoilPhases::Aqua;
|
||||
static constexpr int Oil = BlackoilPhases::Liquid;
|
||||
static constexpr int Gas = BlackoilPhases::Vapour;
|
||||
|
||||
// Make the fbhp() function.
|
||||
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
|
||||
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
||||
const double vfp_ref_depth = table.getDatumDepth();
|
||||
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
|
||||
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
|
||||
assert(rates.size() == 3);
|
||||
return baseif_.vfpProperties()->getProd()
|
||||
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
|
||||
};
|
||||
|
||||
// Make the flo() function.
|
||||
auto flo = [&table](const std::vector<double>& rates) {
|
||||
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
||||
};
|
||||
|
||||
// Get the flo samples, add extra samples at low rates and bhp
|
||||
// limit point if necessary. Then the sign must be flipped
|
||||
// since the VFP code expects that production flo values are
|
||||
// negative.
|
||||
std::vector<double> flo_samples = table.getFloAxis();
|
||||
if (flo_samples[0] > 0.0) {
|
||||
const double f0 = flo_samples[0];
|
||||
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
||||
}
|
||||
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
|
||||
if (flo_samples.back() < flo_bhp_limit) {
|
||||
flo_samples.push_back(flo_bhp_limit);
|
||||
}
|
||||
for (double& x : flo_samples) {
|
||||
x = -x;
|
||||
}
|
||||
|
||||
// Find bhp values for inflow relation corresponding to flo samples.
|
||||
std::vector<double> bhp_samples;
|
||||
for (double flo_sample : flo_samples) {
|
||||
if (flo_sample < -flo_bhp_limit) {
|
||||
// We would have to go under the bhp limit to obtain a
|
||||
// flow of this magnitude. We associate all such flows
|
||||
// with simply the bhp limit. The first one
|
||||
// encountered is considered valid, the rest not. They
|
||||
// are therefore skipped.
|
||||
bhp_samples.push_back(controls.bhp_limit);
|
||||
break;
|
||||
}
|
||||
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
||||
return flo(frates(bhp)) - flo_sample;
|
||||
};
|
||||
// TODO: replace hardcoded low/high limits.
|
||||
const double low = 10.0 * unit::barsa;
|
||||
const double high = 600.0 * unit::barsa;
|
||||
const int max_iteration = 50;
|
||||
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
|
||||
int iteration = 0;
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<>::
|
||||
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
||||
bhp_samples.push_back(solved_bhp);
|
||||
}
|
||||
catch (...) {
|
||||
// Use previous value (or max value if at start) if we failed.
|
||||
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
||||
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
|
||||
}
|
||||
}
|
||||
|
||||
// Find bhp values for VFP relation corresponding to flo samples.
|
||||
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
||||
std::vector<double> fbhp_samples(num_samples);
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
||||
}
|
||||
// #define EXTRA_THP_DEBUGGING
|
||||
#ifdef EXTRA_THP_DEBUGGING
|
||||
std::string dbgmsg;
|
||||
dbgmsg += "flo: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
||||
}
|
||||
dbgmsg += "\nbhp: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
||||
}
|
||||
dbgmsg += "\nfbhp: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
||||
}
|
||||
OpmLog::debug(dbgmsg);
|
||||
#endif // EXTRA_THP_DEBUGGING
|
||||
|
||||
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
||||
// We only look at the valid
|
||||
int sign_change_index = -1;
|
||||
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
||||
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
||||
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
||||
if (curr * next < 0.0) {
|
||||
// Sign change in the [ii, ii + 1] interval.
|
||||
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the no solution case.
|
||||
if (sign_change_index == -1) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Solve for the proper solution in the given interval.
|
||||
auto eq = [&fbhp, &frates](double bhp) {
|
||||
return fbhp(frates(bhp)) - bhp;
|
||||
};
|
||||
// TODO: replace hardcoded low/high limits.
|
||||
const double low = bhp_samples[sign_change_index + 1];
|
||||
const double high = bhp_samples[sign_change_index];
|
||||
const int max_iteration = 50;
|
||||
const double bhp_tolerance = 0.01 * unit::barsa;
|
||||
int iteration = 0;
|
||||
if (low == high) {
|
||||
// We are in the high flow regime where the bhp_samples
|
||||
// are all equal to the bhp_limit.
|
||||
assert(low == controls.bhp_limit);
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<>::
|
||||
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
||||
#ifdef EXTRA_THP_DEBUGGING
|
||||
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
||||
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
||||
#endif // EXTRA_THP_DEBUGGING
|
||||
return solved_bhp;
|
||||
}
|
||||
catch (...) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
||||
return std::nullopt;
|
||||
}
|
||||
return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, getRho(), alq_value, deferred_logger);
|
||||
}
|
||||
|
||||
template<class Scalar>
|
||||
|
@ -105,6 +105,7 @@ protected:
|
||||
std::optional<double> computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const double)>& frates,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger,
|
||||
double maxPerfPress,
|
||||
double alq_value) const;
|
||||
|
||||
// Base interface reference
|
||||
|
@ -2337,10 +2337,43 @@ namespace Opm
|
||||
return rates;
|
||||
};
|
||||
|
||||
return this->StandardWellGeneric<Scalar>::computeBhpAtThpLimitProdWithAlq(frates,
|
||||
double max_pressure = 0.0;
|
||||
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
|
||||
const int cell_idx = this->well_cells_[perf];
|
||||
const auto& int_quants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
||||
const auto& fs = int_quants.fluidState();
|
||||
double pressure_cell = this->getPerfCellPressure(fs).value();
|
||||
max_pressure = std::max(max_pressure, pressure_cell);
|
||||
}
|
||||
auto bhpAtLimit = this->StandardWellGeneric<Scalar>::computeBhpAtThpLimitProdWithAlq(frates,
|
||||
summary_state,
|
||||
deferred_logger,
|
||||
max_pressure,
|
||||
alq_value);
|
||||
auto v = frates(*bhpAtLimit);
|
||||
if(bhpAtLimit && std::all_of(v.cbegin(), v.cend(), [](double i){ return i <= 0; }))
|
||||
return bhpAtLimit;
|
||||
|
||||
auto fratesIter = [this, &ebos_simulator, &deferred_logger](const double bhp) {
|
||||
// Solver the well iterations to see if we are
|
||||
// able to get a solution with an update
|
||||
// solution
|
||||
std::vector<double> rates(3);
|
||||
computeWellRatesWithBhpIterations(ebos_simulator, bhp, rates, deferred_logger);
|
||||
return rates;
|
||||
};
|
||||
|
||||
bhpAtLimit = this->StandardWellGeneric<Scalar>::computeBhpAtThpLimitProdWithAlq(fratesIter,
|
||||
summary_state,
|
||||
deferred_logger,
|
||||
max_pressure,
|
||||
alq_value);
|
||||
v = frates(*bhpAtLimit);
|
||||
if(bhpAtLimit && std::all_of(v.cbegin(), v.cend(), [](double i){ return i <= 0; }))
|
||||
return bhpAtLimit;
|
||||
|
||||
// we still don't get a valied solution.
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
|
||||
|
@ -23,12 +23,14 @@
|
||||
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
||||
|
||||
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
|
||||
|
||||
#include <opm/common/utility/numeric/RootFinders.hpp>
|
||||
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
||||
#include <opm/simulators/wells/PerforationData.hpp>
|
||||
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
||||
#include <opm/simulators/wells/VFPProperties.hpp>
|
||||
#include <opm/simulators/wells/WellState.hpp>
|
||||
#include <opm/simulators/wells/WellHelpers.hpp>
|
||||
#include <opm/simulators/wells/VFPHelpers.hpp>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
@ -432,5 +434,314 @@ void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, Deferr
|
||||
deferred_logger.info(msg);
|
||||
}
|
||||
|
||||
std::optional<double>
|
||||
WellInterfaceGeneric::
|
||||
bhpMax(const std::function<double(const double)>& fflo,
|
||||
const double bhp_limit,
|
||||
const double maxPerfPress,
|
||||
const double vfp_flo_front,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Find the bhp-point where production becomes nonzero.
|
||||
double bhp_max = 0.0;
|
||||
double low = bhp_limit;
|
||||
double high = maxPerfPress + 1.0 * unit::barsa;
|
||||
double f_low = fflo(low);
|
||||
double f_high = fflo(high);
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high));
|
||||
int adjustments = 0;
|
||||
const int max_adjustments = 10;
|
||||
const double adjust_amount = 5.0 * unit::barsa;
|
||||
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
||||
// Same sign, adjust high to see if we can flip it.
|
||||
high += adjust_amount;
|
||||
f_high = fflo(high);
|
||||
++adjustments;
|
||||
}
|
||||
if (f_low * f_high > 0.0) {
|
||||
if (f_low > 0.0) {
|
||||
// Even at the BHP limit, we are injecting.
|
||||
// There will be no solution here, return an
|
||||
// empty optional.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to inoperability for well " + this->name());
|
||||
return std::nullopt;
|
||||
} else {
|
||||
// Still producing, even at high bhp.
|
||||
assert(f_high < 0.0);
|
||||
bhp_max = high;
|
||||
}
|
||||
} else {
|
||||
// Bisect to find a bhp point where we produce, but
|
||||
// not a large amount ('eps' below).
|
||||
const double eps = 0.1 * std::fabs(vfp_flo_front);
|
||||
const int maxit = 50;
|
||||
int it = 0;
|
||||
while (std::fabs(f_low) > eps && it < maxit) {
|
||||
const double curr = 0.5*(low + high);
|
||||
const double f_curr = fflo(curr);
|
||||
if (f_curr * f_low > 0.0) {
|
||||
low = curr;
|
||||
f_low = f_curr;
|
||||
} else {
|
||||
high = curr;
|
||||
f_high = f_curr;
|
||||
}
|
||||
++it;
|
||||
}
|
||||
if (it < maxit) {
|
||||
bhp_max = low;
|
||||
} else {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Bisect did not find the bhp-point where we produce for well " + this->name());
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high) +
|
||||
" bhp_max = " + std::to_string(bhp_max));
|
||||
return bhp_max;
|
||||
}
|
||||
|
||||
|
||||
bool
|
||||
WellInterfaceGeneric::
|
||||
bisectBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
std::optional<double>& approximate_solution,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
bool finding_bracket = false;
|
||||
low = range[0];
|
||||
high = range[1];
|
||||
|
||||
double eq_high = eq(high);
|
||||
double eq_low = eq(low);
|
||||
const double eq_bhplimit = eq_low;
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" eq(low) = " + std::to_string(eq_low) +
|
||||
" eq(high) = " + std::to_string(eq_high));
|
||||
if (eq_low * eq_high > 0.0) {
|
||||
// Failed to bracket the zero.
|
||||
// If this is due to having two solutions, bisect until bracketed.
|
||||
double abs_low = std::fabs(eq_low);
|
||||
double abs_high = std::fabs(eq_high);
|
||||
int bracket_attempts = 0;
|
||||
const int max_bracket_attempts = 20;
|
||||
double interval = high - low;
|
||||
const double min_interval = 1.0 * unit::barsa;
|
||||
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
||||
if (abs_high < abs_low) {
|
||||
low = 0.5 * (low + high);
|
||||
eq_low = eq(low);
|
||||
abs_low = std::fabs(eq_low);
|
||||
} else {
|
||||
high = 0.5 * (low + high);
|
||||
eq_high = eq(high);
|
||||
abs_high = std::fabs(eq_high);
|
||||
}
|
||||
++bracket_attempts;
|
||||
}
|
||||
|
||||
if (eq_low * eq_high <= 0.) {
|
||||
// We have a bracket!
|
||||
finding_bracket = true;
|
||||
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
||||
// If so, that is the bracket we shall use, choosing the solution with the
|
||||
// highest flow.
|
||||
if (eq_low * eq_bhplimit <= 0.0) {
|
||||
high = low;
|
||||
low = range[0];
|
||||
}
|
||||
} else { // eq_low * eq_high > 0.0
|
||||
// Still failed bracketing!
|
||||
const double limit = 3.0 * unit::barsa;
|
||||
if (std::min(abs_low, abs_high) < limit) {
|
||||
// Return the least bad solution if less off than 3 bar.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) not solved precisely for well " + this->name());
|
||||
approximate_solution = abs_low < abs_high ? low : high;
|
||||
} else {
|
||||
// Return failure.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) solve failed due to bracketing failure for well " +
|
||||
this->name());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
finding_bracket = true;
|
||||
}
|
||||
return finding_bracket;
|
||||
}
|
||||
|
||||
bool
|
||||
WellInterfaceGeneric::
|
||||
bruteForceBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
bool finding_bracket = false;
|
||||
low = range[0];
|
||||
high = range[1];
|
||||
const int sample_number = 100;
|
||||
const double interval = (high - low) / sample_number;
|
||||
double eq_low = eq(low);
|
||||
double eq_high;
|
||||
for (int i = 0; i < sample_number + 1; ++i) {
|
||||
high = range[0] + interval * i;
|
||||
eq_high = eq(high);
|
||||
if (eq_high * eq_low <= 0.) {
|
||||
finding_bracket = true;
|
||||
break;
|
||||
}
|
||||
low = high;
|
||||
eq_low = eq_high;
|
||||
}
|
||||
if (finding_bracket) {
|
||||
deferred_logger.debug(
|
||||
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
||||
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
||||
}
|
||||
return finding_bracket;
|
||||
}
|
||||
|
||||
std::optional<double>
|
||||
WellInterfaceGeneric::
|
||||
computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
|
||||
const SummaryState& summary_state,
|
||||
const double maxPerfPress,
|
||||
const double rho,
|
||||
const double alq_value,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) should be returned.
|
||||
|
||||
static constexpr int Water = BlackoilPhases::Aqua;
|
||||
static constexpr int Oil = BlackoilPhases::Liquid;
|
||||
static constexpr int Gas = BlackoilPhases::Vapour;
|
||||
|
||||
// Make the fbhp() function.
|
||||
const auto& controls = this->wellEcl().productionControls(summary_state);
|
||||
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
||||
const double vfp_ref_depth = table.getDatumDepth();
|
||||
const double thp_limit = this->getTHPConstraint(summary_state);
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(this->refDepth(), vfp_ref_depth, rho, this->gravity());
|
||||
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
|
||||
assert(rates.size() == 3);
|
||||
return this->vfpProperties()->getProd()
|
||||
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
|
||||
};
|
||||
|
||||
// Make the flo() function.
|
||||
auto flo = [&table](const std::vector<double>& rates) {
|
||||
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
||||
};
|
||||
|
||||
// Find the bhp-point where production becomes nonzero.
|
||||
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
||||
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
|
||||
|
||||
// could not solve for the bhp-point, we could not continue to find the bhp
|
||||
if (!bhp_max.has_value()) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to not being able to "
|
||||
"find bhp-point where production becomes non-zero for well " + this->name());
|
||||
return std::nullopt;
|
||||
}
|
||||
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
|
||||
return computeBhpAtThpLimitCommon(frates, fbhp, range, deferred_logger);
|
||||
}
|
||||
|
||||
std::optional<double>
|
||||
WellInterfaceGeneric::
|
||||
computeBhpAtThpLimitCommon(const std::function<std::vector<double>(const double)>& frates,
|
||||
const std::function<double(const std::vector<double>)>& fbhp,
|
||||
const std::array<double, 2>& range,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) should be returned.
|
||||
|
||||
// Define the equation we want to solve.
|
||||
auto eq = [&fbhp, &frates](double bhp) {
|
||||
return fbhp(frates(bhp)) - bhp;
|
||||
};
|
||||
|
||||
// Find appropriate brackets for the solution.
|
||||
std::optional<double> approximate_solution;
|
||||
double low, high;
|
||||
// trying to use bisect way to locate a bracket
|
||||
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
|
||||
|
||||
// based on the origional design, if an approximate solution is suggested, we use this value directly
|
||||
// in the long run, we might change it
|
||||
if (approximate_solution.has_value()) {
|
||||
return *approximate_solution;
|
||||
}
|
||||
|
||||
if (!finding_bracket) {
|
||||
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
|
||||
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
|
||||
}
|
||||
|
||||
if (!finding_bracket) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to not being able to "
|
||||
"bracket the bhp solution with the brute force search for " + this->name());
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Solve for the proper solution in the given interval.
|
||||
const int max_iteration = 100;
|
||||
const double bhp_tolerance = 0.01 * unit::barsa;
|
||||
int iteration = 0;
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
||||
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
||||
return solved_bhp;
|
||||
}
|
||||
catch (...) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + this->name());
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
} // namespace Opm
|
||||
|
@ -179,6 +179,16 @@ public:
|
||||
bool changedToOpenThisStep() const {
|
||||
return this->changed_to_open_this_step_;
|
||||
}
|
||||
std::optional<double> computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
|
||||
const SummaryState& summary_state,
|
||||
const double maxPerfPress,
|
||||
const double rho,
|
||||
const double alq_value,
|
||||
DeferredLogger& deferred_logger
|
||||
) const;
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
bool getAllowCrossFlow() const;
|
||||
double mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const;
|
||||
@ -187,6 +197,30 @@ protected:
|
||||
WellTestState& well_test_state,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
std::optional<double> bhpMax(const std::function<double(const double)>& fflo,
|
||||
const double bhp_limit,
|
||||
const double maxPerfPress,
|
||||
const double vfp_flo_front,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
std::optional<double> computeBhpAtThpLimitCommon(
|
||||
const std::function<std::vector<double>(const double)>& frates,
|
||||
const std::function<double(const std::vector<double>)>& fbhp,
|
||||
const std::array<double, 2>& range,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
|
||||
bool bruteForceBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
bool bisectBracket(const std::function<double(const double)>& eq,
|
||||
const std::array<double, 2>& range,
|
||||
double& low, double& high,
|
||||
std::optional<double>& approximate_solution,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
|
||||
// definition of the struct OperabilityStatus
|
||||
struct OperabilityStatus {
|
||||
|
Loading…
Reference in New Issue
Block a user