mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #1247 from totto82/removeState-PR
Remove reservoirState from BlackoilModelEbos
This commit is contained in:
@@ -115,23 +115,23 @@ namespace Opm {
|
||||
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||||
|
||||
typedef double Scalar;
|
||||
static const int numEq = BlackoilIndices::numEq;
|
||||
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
|
||||
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
|
||||
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
|
||||
static const int polymerConcentrationIdx = BlackoilIndices::polymerConcentrationIdx;
|
||||
static const int numEq = Indices::numEq;
|
||||
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
||||
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
||||
static const int solventSaturationIdx = Indices::solventSaturationIdx;
|
||||
static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
|
||||
|
||||
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
typedef Dune::BlockVector<VectorBlockType> BVector;
|
||||
|
||||
typedef ISTLSolver< MatrixBlockType, VectorBlockType, BlackoilIndices::pressureSwitchIdx > ISTLSolverType;
|
||||
typedef ISTLSolver< MatrixBlockType, VectorBlockType, Indices::pressureSwitchIdx > ISTLSolverType;
|
||||
//typedef typename SolutionVector :: value_type PrimaryVariables ;
|
||||
|
||||
// For the conversion between the surface volume rate and resrevoir voidage rate
|
||||
@@ -204,12 +204,16 @@ namespace Opm {
|
||||
/// \param[in, out] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
void prepareStep(const SimulatorTimerInterface& /*timer*/,
|
||||
const ReservoirState& reservoir_state,
|
||||
const ReservoirState& /*reservoir_state*/,
|
||||
const WellState& /* well_state */)
|
||||
{
|
||||
if ( wellModel().wellCollection()->havingVREPGroups() ) {
|
||||
updateRateConverter(reservoir_state);
|
||||
updateRateConverter();
|
||||
}
|
||||
|
||||
unsigned numDof = ebosSimulator_.model().numGridDof();
|
||||
wasSwitched_.resize(numDof);
|
||||
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
|
||||
}
|
||||
|
||||
|
||||
@@ -226,7 +230,7 @@ namespace Opm {
|
||||
SimulatorReport nonlinearIteration(const int iteration,
|
||||
const SimulatorTimerInterface& timer,
|
||||
NonlinearSolverType& nonlinear_solver,
|
||||
ReservoirState& reservoir_state,
|
||||
ReservoirState& /*reservoir_state*/,
|
||||
WellState& well_state)
|
||||
{
|
||||
SimulatorReport report;
|
||||
@@ -245,7 +249,7 @@ namespace Opm {
|
||||
report.total_linearizations = 1;
|
||||
|
||||
try {
|
||||
report += assemble(timer, iteration, reservoir_state, well_state);
|
||||
report += assemble(timer, iteration, well_state);
|
||||
report.assemble_time += perfTimer.stop();
|
||||
}
|
||||
catch (...) {
|
||||
@@ -298,30 +302,27 @@ namespace Opm {
|
||||
perfTimer.reset();
|
||||
perfTimer.start();
|
||||
|
||||
// Stabilize the nonlinear update.
|
||||
bool isOscillate = false;
|
||||
bool isStagnate = false;
|
||||
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
||||
if (isOscillate) {
|
||||
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
||||
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
||||
if (terminalOutputEnabled()) {
|
||||
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
||||
+ std::to_string(current_relaxation_);
|
||||
OpmLog::info(msg);
|
||||
if (param_.use_update_stabilization_) {
|
||||
// Stabilize the nonlinear update.
|
||||
bool isOscillate = false;
|
||||
bool isStagnate = false;
|
||||
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
||||
if (isOscillate) {
|
||||
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
||||
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
||||
if (terminalOutputEnabled()) {
|
||||
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
||||
+ std::to_string(current_relaxation_);
|
||||
OpmLog::info(msg);
|
||||
}
|
||||
}
|
||||
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
||||
}
|
||||
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
||||
|
||||
// Apply the update, with considering model-dependent limitations and
|
||||
// chopping of the update.
|
||||
updateState(x,reservoir_state);
|
||||
updateState(x,iteration);
|
||||
wellModel().updateWellState(xw, well_state);
|
||||
// if the solution is updated the solution needs to be comunicated to ebos
|
||||
// and the cachedIntensiveQuantities needs to be updated.
|
||||
convertInput( iteration, reservoir_state, ebosSimulator_ );
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
|
||||
report.update_time += perfTimer.stop();
|
||||
}
|
||||
|
||||
@@ -355,7 +356,6 @@ namespace Opm {
|
||||
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
||||
SimulatorReport assemble(const SimulatorTimerInterface& timer,
|
||||
const int iterationIdx,
|
||||
const ReservoirState& reservoir_state,
|
||||
WellState& well_state)
|
||||
{
|
||||
using namespace Opm::AutoDiffGrid;
|
||||
@@ -364,11 +364,11 @@ namespace Opm {
|
||||
|
||||
// when having VREP group control, update the rate converter based on reservoir state
|
||||
if ( wellModel().wellCollection()->havingVREPGroups() ) {
|
||||
updateRateConverter(reservoir_state);
|
||||
updateRateConverter();
|
||||
}
|
||||
|
||||
// -------- Mass balance equations --------
|
||||
assembleMassBalanceEq(timer, iterationIdx, reservoir_state);
|
||||
assembleMassBalanceEq(timer, iterationIdx);
|
||||
|
||||
// -------- Well equations ----------
|
||||
double dt = timer.currentStepLength();
|
||||
@@ -389,44 +389,86 @@ namespace Opm {
|
||||
return report;
|
||||
}
|
||||
|
||||
|
||||
/// \brief compute the relative change between to simulation states
|
||||
// \return || u^n+1 - u^n || / || u^n+1 ||
|
||||
double relativeChange( const SimulationDataContainer& previous, const SimulationDataContainer& current ) const
|
||||
// compute the "relative" change of the solution between time steps
|
||||
template <class Dummy>
|
||||
double relativeChange(const Dummy&, const Dummy&) const
|
||||
{
|
||||
std::vector< double > p0 ( previous.pressure() );
|
||||
std::vector< double > sat0( previous.saturation() );
|
||||
Scalar resultDelta = 0.0;
|
||||
Scalar resultDenom = 0.0;
|
||||
|
||||
const std::size_t pSize = p0.size();
|
||||
const std::size_t satSize = sat0.size();
|
||||
const auto& elemMapper = ebosSimulator_.model().elementMapper();
|
||||
const auto& gridView = ebosSimulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
if (elem.partitionType() != Dune::InteriorEntity)
|
||||
continue;
|
||||
|
||||
// compute u^n - u^n+1
|
||||
for( std::size_t i=0; i<pSize; ++i ) {
|
||||
p0[ i ] -= current.pressure()[ i ];
|
||||
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
|
||||
unsigned globalElemIdx = elemMapper.index(elem);
|
||||
#else
|
||||
unsigned globalElemIdx = elemMapper.map(elem);
|
||||
#endif
|
||||
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
|
||||
|
||||
Scalar pressureNew;
|
||||
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
|
||||
|
||||
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
|
||||
Scalar oilSaturationNew = 1.0;
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx];
|
||||
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
|
||||
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
|
||||
}
|
||||
|
||||
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
|
||||
|
||||
Scalar pressureOld;
|
||||
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
|
||||
|
||||
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
|
||||
Scalar oilSaturationOld = 1.0;
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx];
|
||||
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
|
||||
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
|
||||
}
|
||||
|
||||
Scalar tmp = pressureNew - pressureOld;
|
||||
resultDelta += tmp*tmp;
|
||||
resultDenom += pressureNew*pressureNew;
|
||||
|
||||
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
|
||||
Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
|
||||
resultDelta += tmp*tmp;
|
||||
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
|
||||
}
|
||||
}
|
||||
|
||||
for( std::size_t i=0; i<satSize; ++i ) {
|
||||
sat0[ i ] -= current.saturation()[ i ];
|
||||
}
|
||||
resultDelta = gridView.comm().sum(resultDelta);
|
||||
resultDenom = gridView.comm().sum(resultDenom);
|
||||
|
||||
// compute || u^n - u^n+1 ||
|
||||
const double stateOld = detail::euclidianNormSquared( p0.begin(), p0.end(), 1, istlSolver().parallelInformation() ) +
|
||||
detail::euclidianNormSquared( sat0.begin(), sat0.end(),
|
||||
current.numPhases(),
|
||||
istlSolver().parallelInformation() );
|
||||
|
||||
// compute || u^n+1 ||
|
||||
const double stateNew = detail::euclidianNormSquared( current.pressure().begin(), current.pressure().end(), 1, istlSolver().parallelInformation() ) +
|
||||
detail::euclidianNormSquared( current.saturation().begin(), current.saturation().end(),
|
||||
current.numPhases(),
|
||||
istlSolver().parallelInformation() );
|
||||
|
||||
if( stateNew > 0.0 ) {
|
||||
return stateOld / stateNew ;
|
||||
}
|
||||
else {
|
||||
return 0.0;
|
||||
}
|
||||
if (resultDenom > 0.0)
|
||||
return resultDelta/resultDenom;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
|
||||
@@ -567,25 +609,38 @@ namespace Opm {
|
||||
/// \param[in, out] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
void updateState(const BVector& dx,
|
||||
ReservoirState& reservoir_state)
|
||||
const int iterationIdx)
|
||||
{
|
||||
using namespace Opm::AutoDiffGrid;
|
||||
const int np = phaseUsage_.num_phases;
|
||||
|
||||
const auto& ebosProblem = ebosSimulator_.problem();
|
||||
|
||||
unsigned numSwitched = 0;
|
||||
ElementContext elemCtx( ebosSimulator_ );
|
||||
const auto& gridView = ebosSimulator_.gridView();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
SolutionVector& solution = ebosSimulator_.model().solution( 0 /* timeIdx */ );
|
||||
|
||||
// Store the initial solution.
|
||||
if( iterationIdx == 0 )
|
||||
{
|
||||
ebosSimulator_.model().solution( 1 /* timeIdx */ ) = solution;
|
||||
}
|
||||
|
||||
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
elemIt != elemEndIt;
|
||||
++elemIt)
|
||||
{
|
||||
const auto& elem = *elemIt;
|
||||
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
|
||||
PrimaryVariables& priVars = solution[ cell_idx ];
|
||||
|
||||
const double& dp = dx[cell_idx][flowPhaseToEbosCompIdx(0)];
|
||||
//reservoir_state.pressure()[cell_idx] -= dp;
|
||||
double& p = reservoir_state.pressure()[cell_idx];
|
||||
double& p = priVars[Indices::pressureSwitchIdx];
|
||||
const double& dp_rel_max = dpMaxRel();
|
||||
const int sign_dp = dp > 0 ? 1: -1;
|
||||
p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max);
|
||||
@@ -601,169 +656,103 @@ namespace Opm {
|
||||
double drs = 0.0;
|
||||
double drv = 0.0;
|
||||
|
||||
double maxVal = 0.0;
|
||||
// water phase
|
||||
maxVal = std::max(std::abs(dsw),maxVal);
|
||||
dso -= dsw;
|
||||
// gas phase
|
||||
switch (reservoir_state.hydroCarbonState()[cell_idx]) {
|
||||
case HydroCarbonState::GasAndOil:
|
||||
// determine the saturation delta values
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
dsg = dxvar;
|
||||
break;
|
||||
case HydroCarbonState::OilOnly:
|
||||
drs = dxvar;
|
||||
break;
|
||||
case HydroCarbonState::GasOnly:
|
||||
dsg -= dsw;
|
||||
drv = dxvar;
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << reservoir_state.hydroCarbonState()[cell_idx]);
|
||||
}
|
||||
dso -= dsg;
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
||||
drs = dxvar;
|
||||
}
|
||||
else {
|
||||
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
|
||||
drv = dxvar;
|
||||
dsg = 0.0;
|
||||
}
|
||||
|
||||
// solvent
|
||||
const double dss = has_solvent_ ? dx[cell_idx][BlackoilIndices::solventSaturationIdx] : 0.0;
|
||||
dso -= dss;
|
||||
const double dss = has_solvent_ ? dx[cell_idx][Indices::solventSaturationIdx] : 0.0;
|
||||
|
||||
// polymer
|
||||
const double dc = has_polymer_ ? dx[cell_idx][BlackoilIndices::polymerConcentrationIdx] : 0.0;
|
||||
const double dc = has_polymer_ ? dx[cell_idx][Indices::polymerConcentrationIdx] : 0.0;
|
||||
|
||||
// Appleyard chop process.
|
||||
// oil
|
||||
dso = - (dsw + dsg + dss);
|
||||
|
||||
// compute a scaling factor for the saturation update so that the maximum
|
||||
// allowed change of saturations between iterations is not exceeded
|
||||
double maxVal = 0.0;
|
||||
maxVal = std::max(std::abs(dsw),maxVal);
|
||||
maxVal = std::max(std::abs(dsg),maxVal);
|
||||
maxVal = std::max(std::abs(dss),maxVal);
|
||||
maxVal = std::max(std::abs(dso),maxVal);
|
||||
maxVal = std::max(std::abs(dss),maxVal);
|
||||
|
||||
double step = dsMax()/maxVal;
|
||||
step = std::min(step, 1.0);
|
||||
|
||||
const Opm::PhaseUsage& pu = phaseUsage_;
|
||||
if (active_[Water]) {
|
||||
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
|
||||
sw -= step * dsw;
|
||||
double satScaleFactor = 1.0;
|
||||
if (maxVal > dsMax()) {
|
||||
satScaleFactor = dsMax()/maxVal;
|
||||
}
|
||||
|
||||
if (active_[Water]) {
|
||||
double& sw = priVars[Indices::waterSaturationIdx];
|
||||
sw -= satScaleFactor * dsw;
|
||||
}
|
||||
|
||||
if (active_[Gas]) {
|
||||
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
|
||||
sg -= step * dsg;
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
double& sg = priVars[Indices::compositionSwitchIdx];
|
||||
sg -= satScaleFactor * dsg;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_solvent_) {
|
||||
double& ss = reservoir_state.getCellData( reservoir_state.SSOL )[cell_idx];
|
||||
ss -= step * dss;
|
||||
double& ss = priVars[Indices::solventSaturationIdx];
|
||||
ss -= satScaleFactor * dss;
|
||||
}
|
||||
|
||||
if (has_polymer_) {
|
||||
double& c = reservoir_state.getCellData( reservoir_state.POLYMER )[cell_idx];
|
||||
c -= step * dc;
|
||||
double& c = priVars[Indices::polymerConcentrationIdx];
|
||||
c -= satScaleFactor * dc;
|
||||
c = std::max(c, 0.0);
|
||||
}
|
||||
|
||||
double& so = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Oil ]];
|
||||
so -= step * dso;
|
||||
|
||||
// phase for when oil and gas
|
||||
// Update rs and rv
|
||||
if (active_[Gas] && active_[Oil] ) {
|
||||
// const double drmaxrel = drMaxRel();
|
||||
// Update rs and rv
|
||||
unsigned pvtRegionIdx = ebosSimulator_.problem().pvtRegionIndex(cell_idx);
|
||||
const double drmaxrel = drMaxRel();
|
||||
if (has_disgas_) {
|
||||
double& rs = reservoir_state.gasoilratio()[cell_idx];
|
||||
rs -= drs;
|
||||
rs = std::max(rs, 0.0);
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
||||
Scalar RsSat =
|
||||
FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx, 300.0, p);
|
||||
|
||||
double& rs = priVars[Indices::compositionSwitchIdx];
|
||||
rs -= ((drs<0)?-1:1)*std::min(std::abs(drs), RsSat*drmaxrel);
|
||||
rs = std::max(rs, 0.0);
|
||||
}
|
||||
|
||||
}
|
||||
if (has_vapoil_) {
|
||||
double& rv = reservoir_state.rv()[cell_idx];
|
||||
rv -= drv;
|
||||
rv = std::max(rv, 0.0);
|
||||
}
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
Scalar RvSat =
|
||||
FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx, 300.0, p);
|
||||
|
||||
// Sg is used as primal variable for water only cells.
|
||||
const double epsilon = 1e-4; //std::sqrt(std::numeric_limits<double>::epsilon());
|
||||
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
|
||||
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
|
||||
double& rs = reservoir_state.gasoilratio()[cell_idx];
|
||||
double& rv = reservoir_state.rv()[cell_idx];
|
||||
|
||||
// phase translation sg <-> rs
|
||||
const HydroCarbonState hydroCarbonState = reservoir_state.hydroCarbonState()[cell_idx];
|
||||
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = intQuants.fluidState();
|
||||
switch (hydroCarbonState) {
|
||||
case HydroCarbonState::GasAndOil: {
|
||||
|
||||
// for the Gas and Oil case rs=rsSat and rv=rvSat
|
||||
rs = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
||||
// use gas pressure?
|
||||
rv = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
||||
|
||||
if (sw > (1.0 - epsilon)) // water only i.e. do nothing
|
||||
break;
|
||||
|
||||
if (sg <= 0.0 && has_disgas_) {
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::OilOnly; // sg --> rs
|
||||
sg = 0;
|
||||
so = 1.0 - sw;
|
||||
if (has_solvent_) {
|
||||
double& ss = reservoir_state.getCellData( reservoir_state.SSOL )[cell_idx];
|
||||
so -= ss;
|
||||
}
|
||||
rs *= (1-epsilon);
|
||||
} else if (so <= 0.0 && has_vapoil_) {
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasOnly; // sg --> rv
|
||||
so = 0;
|
||||
sg = 1.0 - sw;
|
||||
if (has_solvent_) {
|
||||
double& ss = reservoir_state.getCellData( reservoir_state.SSOL )[cell_idx];
|
||||
sg -= ss;
|
||||
}
|
||||
rv *= (1-epsilon);
|
||||
double& rv = priVars[Indices::compositionSwitchIdx];
|
||||
rv -= ((drv<0)?-1:1)*std::min(std::abs(drv), RvSat*drmaxrel);
|
||||
rv = std::max(rv, 0.0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case HydroCarbonState::OilOnly: {
|
||||
if (sw > (1.0 - epsilon)) {
|
||||
// water only change to Sg
|
||||
rs = 0;
|
||||
rv = 0;
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
||||
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
|
||||
break;
|
||||
}
|
||||
|
||||
const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
||||
if (rs > ( rsSat * (1+epsilon) ) ) {
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
||||
sg = epsilon;
|
||||
so -= epsilon;
|
||||
rs = rsSat;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case HydroCarbonState::GasOnly: {
|
||||
if (sw > (1.0 - epsilon)) {
|
||||
// water only change to Sg
|
||||
rs = 0;
|
||||
rv = 0;
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
||||
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
|
||||
break;
|
||||
}
|
||||
|
||||
const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
||||
if (rv > rvSat * (1+epsilon) ) {
|
||||
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
||||
so = epsilon;
|
||||
rv = rvSat;
|
||||
sg -= epsilon;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << hydroCarbonState);
|
||||
}
|
||||
}
|
||||
|
||||
// Add an epsilon to make it harder to switch back immediately after the primary variable was changed.
|
||||
if (wasSwitched_[cell_idx])
|
||||
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx, 1e-5);
|
||||
else
|
||||
wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx);
|
||||
|
||||
if (wasSwitched_[cell_idx])
|
||||
++numSwitched;
|
||||
}
|
||||
|
||||
// if the solution is updated the intensive Quantities need to be recalculated
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
|
||||
}
|
||||
|
||||
/// Return true if output to cout is wanted.
|
||||
@@ -1568,114 +1557,47 @@ namespace Opm {
|
||||
bool localWellsActive() const { return well_model_.localWellsActive(); }
|
||||
|
||||
|
||||
void convertInput( const int iterationIdx,
|
||||
const ReservoirState& reservoirState,
|
||||
Simulator& simulator ) const
|
||||
{
|
||||
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
|
||||
const Opm::PhaseUsage pu = phaseUsage_;
|
||||
|
||||
const int numCells = reservoirState.numCells();
|
||||
const int numPhases = phaseUsage_.num_phases;
|
||||
const auto& oilPressure = reservoirState.pressure();
|
||||
const auto& saturations = reservoirState.saturation();
|
||||
const auto& rs = reservoirState.gasoilratio();
|
||||
const auto& rv = reservoirState.rv();
|
||||
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
|
||||
{
|
||||
// set non-switching primary variables
|
||||
PrimaryVariables& cellPv = solution[ cellIdx ];
|
||||
// set water saturation
|
||||
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
|
||||
|
||||
if (has_solvent_) {
|
||||
cellPv[BlackoilIndices::solventSaturationIdx] = reservoirState.getCellData( reservoirState.SSOL )[cellIdx];
|
||||
}
|
||||
|
||||
if (has_polymer_) {
|
||||
cellPv[BlackoilIndices::polymerConcentrationIdx] = reservoirState.getCellData( reservoirState.POLYMER )[cellIdx];
|
||||
}
|
||||
|
||||
|
||||
// set switching variable and interpretation
|
||||
if (active_[Gas] ) {
|
||||
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
|
||||
{
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
|
||||
}
|
||||
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
|
||||
{
|
||||
// this case (-> gas only with vaporized oil in the gas) is
|
||||
// relatively expensive as it requires to compute the capillary
|
||||
// pressure in order to get the gas phase pressure. (the reason why
|
||||
// ebos uses the gas pressure here is that it makes the common case
|
||||
// of the primary variable switching code fast because to determine
|
||||
// whether the oil phase appears one needs to compute the Rv value
|
||||
// for the saturated gas phase and if this is not available as a
|
||||
// primary variable, it needs to be computed.) luckily for here, the
|
||||
// gas-only case is not too common, so the performance impact of this
|
||||
// is limited.
|
||||
typedef Opm::SimpleModularFluidState<double,
|
||||
/*numPhases=*/3,
|
||||
/*numComponents=*/3,
|
||||
FluidSystem,
|
||||
/*storePressure=*/false,
|
||||
/*storeTemperature=*/false,
|
||||
/*storeComposition=*/false,
|
||||
/*storeFugacity=*/false,
|
||||
/*storeSaturation=*/true,
|
||||
/*storeDensity=*/false,
|
||||
/*storeViscosity=*/false,
|
||||
/*storeEnthalpy=*/false> SatOnlyFluidState;
|
||||
SatOnlyFluidState fluidState;
|
||||
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
|
||||
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
|
||||
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
|
||||
|
||||
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
|
||||
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
|
||||
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
||||
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
|
||||
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
|
||||
}
|
||||
else
|
||||
{
|
||||
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
|
||||
}
|
||||
} else {
|
||||
// for oil-water case oil pressure should be used as primary variable
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
||||
}
|
||||
}
|
||||
|
||||
if( iterationIdx == 0 )
|
||||
{
|
||||
simulator.model().solution( 1 /* timeIdx */ ) = solution;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
int ebosCompToFlowPhaseIdx( const int compIdx ) const
|
||||
{
|
||||
assert(compIdx < 3);
|
||||
const int compToPhase[ 3 ] = { Oil, Water, Gas };
|
||||
return compToPhase[ compIdx ];
|
||||
}
|
||||
|
||||
int flowToEbosPvIdx( const int flowPv ) const
|
||||
{
|
||||
const int flowToEbos[] = {
|
||||
Indices::pressureSwitchIdx,
|
||||
Indices::waterSaturationIdx,
|
||||
Indices::compositionSwitchIdx,
|
||||
Indices::solventSaturationIdx
|
||||
};
|
||||
|
||||
if (flowPv > 2 )
|
||||
return flowPv;
|
||||
|
||||
return flowToEbos[ flowPv ];
|
||||
}
|
||||
|
||||
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
||||
{
|
||||
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx};
|
||||
const int phaseToComp[] = {
|
||||
FluidSystem::waterCompIdx,
|
||||
FluidSystem::oilCompIdx,
|
||||
FluidSystem::gasCompIdx
|
||||
};
|
||||
|
||||
if (phaseIdx > 2 )
|
||||
return phaseIdx;
|
||||
|
||||
return phaseToComp[ phaseIdx ];
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
||||
{
|
||||
assert(phaseIdx < 3);
|
||||
@@ -1684,30 +1606,9 @@ namespace Opm {
|
||||
}
|
||||
|
||||
|
||||
void updateRateConverter(const ReservoirState& reservoir_state)
|
||||
void updateRateConverter()
|
||||
{
|
||||
const int nw = numWells();
|
||||
int global_number_wells = nw;
|
||||
|
||||
#if HAVE_MPI
|
||||
if ( istlSolver_->parallelInformation().type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const auto& info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(istlSolver_->parallelInformation());
|
||||
global_number_wells = info.communicator().sum(global_number_wells);
|
||||
if ( global_number_wells )
|
||||
{
|
||||
rate_converter_.defineState(reservoir_state, boost::any_cast<const ParallelISTLInformation&>(istlSolver_->parallelInformation()));
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
if ( global_number_wells )
|
||||
{
|
||||
rate_converter_.defineState(reservoir_state);
|
||||
}
|
||||
}
|
||||
rate_converter_.defineState<ElementContext>(ebosSimulator_);
|
||||
}
|
||||
|
||||
|
||||
@@ -1724,8 +1625,7 @@ namespace Opm {
|
||||
|
||||
private:
|
||||
void assembleMassBalanceEq(const SimulatorTimerInterface& timer,
|
||||
const int iterationIdx,
|
||||
const ReservoirState& reservoirState)
|
||||
const int iterationIdx)
|
||||
{
|
||||
ebosSimulator_.startNextEpisode( timer.currentStepLength() );
|
||||
ebosSimulator_.setEpisodeIndex( timer.reportStepNum() );
|
||||
@@ -1755,9 +1655,9 @@ namespace Opm {
|
||||
ebosSimulator_.problem().beginTimeStep();
|
||||
}
|
||||
// if the last time step failed we need to update the solution varables in ebos
|
||||
// and recalculate the IntesiveQuantities. Also pass the solution initially.
|
||||
if ( (timer.lastStepFailed() || timer.reportStepNum()==0) && iterationIdx == 0 ) {
|
||||
convertInput( iterationIdx, reservoirState, ebosSimulator_ );
|
||||
// and recalculate the Intesive Quantities.
|
||||
if ( timer.lastStepFailed() && iterationIdx == 0 ) {
|
||||
ebosSimulator_.model().solution( 0 /* timeIdx */ ) = ebosSimulator_.model().solution( 1 /* timeIdx */ );
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
@@ -1780,6 +1680,7 @@ namespace Opm {
|
||||
|
||||
public:
|
||||
bool isBeginReportStep_;
|
||||
std::vector<bool> wasSwitched_;
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
@@ -174,14 +174,17 @@ void solutionToSim( const data::Solution& sol,
|
||||
}
|
||||
|
||||
if( sol.has( "RS" ) ) {
|
||||
state.registerCellData("GASOILRATIO", 1);
|
||||
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
|
||||
}
|
||||
|
||||
if( sol.has( "RV" ) ) {
|
||||
state.registerCellData("RV", 1);
|
||||
state.getCellData( "RV" ) = sol.data( "RV" );
|
||||
}
|
||||
|
||||
if ( sol.has( "SSOL" ) ) {
|
||||
state.registerCellData("SSOL", 1);
|
||||
state.getCellData("SSOL") = sol.data("SSOL");
|
||||
}
|
||||
|
||||
|
||||
@@ -345,8 +345,6 @@ namespace Opm
|
||||
|
||||
class PackUnPackSimulationDataContainer : public P2PCommunicatorType::DataHandleInterface
|
||||
{
|
||||
const SimulationDataContainer& localState_;
|
||||
SimulationDataContainer& globalState_;
|
||||
const data::Solution& localCellData_;
|
||||
data::Solution& globalCellData_;
|
||||
const WellStateFullyImplicitBlackoil& localWellState_;
|
||||
@@ -355,8 +353,7 @@ namespace Opm
|
||||
const IndexMapStorageType& indexMaps_;
|
||||
|
||||
public:
|
||||
PackUnPackSimulationDataContainer( const SimulationDataContainer& localState,
|
||||
SimulationDataContainer& globalState,
|
||||
PackUnPackSimulationDataContainer( std::size_t numGlobalCells,
|
||||
const data::Solution& localCellData,
|
||||
data::Solution& globalCellData,
|
||||
const WellStateFullyImplicitBlackoil& localWellState,
|
||||
@@ -364,30 +361,20 @@ namespace Opm
|
||||
const IndexMapType& localIndexMap,
|
||||
const IndexMapStorageType& indexMaps,
|
||||
const bool isIORank )
|
||||
: localState_( localState ),
|
||||
globalState_( globalState ),
|
||||
localCellData_( localCellData ),
|
||||
: localCellData_( localCellData ),
|
||||
globalCellData_( globalCellData ),
|
||||
localWellState_( localWellState ),
|
||||
globalWellState_( globalWellState ),
|
||||
localIndexMap_( localIndexMap ),
|
||||
indexMaps_( indexMaps )
|
||||
{
|
||||
|
||||
if( isIORank )
|
||||
{
|
||||
// add missing data to global state
|
||||
for (const auto& pair : localState.cellData()) {
|
||||
const std::string& key = pair.first;
|
||||
if (!globalState_.hasCellData( key )) {
|
||||
globalState_.registerCellData( key , localState.numCellDataComponents( key ));
|
||||
}
|
||||
}
|
||||
|
||||
// add missing data to global cell data
|
||||
for (const auto& pair : localCellData_) {
|
||||
const std::string& key = pair.first;
|
||||
std::size_t container_size = globalState_.numCells() *
|
||||
pair.second.data.size() / localState_.numCells();
|
||||
std::size_t container_size = numGlobalCells;
|
||||
auto ret = globalCellData_.insert(key, pair.second.dim,
|
||||
std::vector<double>(container_size),
|
||||
pair.second.target);
|
||||
@@ -413,13 +400,9 @@ namespace Opm
|
||||
// write all cell data registered in local state
|
||||
for (const auto& pair : localCellData_) {
|
||||
const auto& data = pair.second.data;
|
||||
const size_t stride = data.size()/localState_.numCells();
|
||||
|
||||
for( size_t i=0; i<stride; ++i )
|
||||
{
|
||||
// write all data from local state to buffer
|
||||
write( buffer, localIndexMap_, data, i, stride );
|
||||
}
|
||||
// write all data from local data to buffer
|
||||
write( buffer, localIndexMap_, data);
|
||||
}
|
||||
|
||||
// write all data from local well state to buffer
|
||||
@@ -428,23 +411,16 @@ namespace Opm
|
||||
|
||||
void doUnpack( const IndexMapType& indexMap, MessageBufferType& buffer )
|
||||
{
|
||||
// write all cell data registered in local state
|
||||
// we loop over the data of the local state as
|
||||
// we loop over the data as
|
||||
// its order governs the order the data got received.
|
||||
for (auto& pair : localCellData_) {
|
||||
const std::string& key = pair.first;
|
||||
|
||||
auto& data = globalCellData_.data(key);
|
||||
const size_t stride = data.size() / globalState_.numCells();
|
||||
|
||||
for( size_t i=0; i<stride; ++i )
|
||||
{
|
||||
//write all data from local state to buffer
|
||||
read( buffer, indexMap, data, i, stride );
|
||||
}
|
||||
//write all data from local cell data to buffer
|
||||
read( buffer, indexMap, data);
|
||||
}
|
||||
|
||||
|
||||
// read well data from buffer
|
||||
readWells( buffer );
|
||||
}
|
||||
@@ -615,7 +591,7 @@ namespace Opm
|
||||
};
|
||||
|
||||
// gather solution to rank 0 for EclipseWriter
|
||||
bool collectToIORank( const SimulationDataContainer& localReservoirState,
|
||||
bool collectToIORank( const SimulationDataContainer& /*localReservoirState*/,
|
||||
const WellStateFullyImplicitBlackoil& localWellState,
|
||||
const data::Solution& localCellData,
|
||||
const int wellStateStepNumber )
|
||||
@@ -649,7 +625,7 @@ namespace Opm
|
||||
globalCellData_->clear();
|
||||
}
|
||||
|
||||
PackUnPackSimulationDataContainer packUnpack( localReservoirState, *globalReservoirState_,
|
||||
PackUnPackSimulationDataContainer packUnpack( numCells(),
|
||||
localCellData, *globalCellData_,
|
||||
localWellState, globalWellState_,
|
||||
localIndexMap_, indexMaps_,
|
||||
@@ -663,7 +639,7 @@ namespace Opm
|
||||
#endif
|
||||
if( isIORank() )
|
||||
{
|
||||
// Update values in the globalReservoirState
|
||||
// copy values from globalCellData to globalReservoirState
|
||||
const std::map<std::string, std::vector<double> > no_extra_data;
|
||||
solutionToSim(*globalCellData_, no_extra_data, phaseUsage_, *globalReservoirState_);
|
||||
}
|
||||
|
||||
@@ -450,7 +450,66 @@ namespace Opm {
|
||||
}
|
||||
calcRmax();
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute average hydrocarbon pressure and maximum
|
||||
* dissolution and evaporation at average hydrocarbon
|
||||
* pressure in all regions in field.
|
||||
*
|
||||
* Fluid properties are evaluated at average hydrocarbon
|
||||
* pressure for purpose of conversion from surface rate to
|
||||
* reservoir voidage rate.
|
||||
*
|
||||
* \param[in] state Dynamic reservoir state.
|
||||
* \param[in] any The information and communication utilities
|
||||
* about/of the parallelization. in any parallel
|
||||
* it wraps a ParallelISTLInformation. Parameter
|
||||
* is optional.
|
||||
*/
|
||||
template <typename ElementContext, class EbosSimulator>
|
||||
void defineState(const EbosSimulator& simulator)
|
||||
{
|
||||
|
||||
//const int numCells = cellPvtIdx_.size();
|
||||
//const Region region = std::vector<int>(numCells, 0);
|
||||
auto& ra = attr_.attributes(0);
|
||||
auto& p = ra.pressure;
|
||||
auto& T = ra.temperature;
|
||||
std::size_t n = 0;
|
||||
|
||||
ElementContext elemCtx( simulator );
|
||||
const auto& gridView = simulator.gridView();
|
||||
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
elemIt != elemEndIt;
|
||||
++elemIt)
|
||||
{
|
||||
|
||||
const auto& elem = *elemIt;
|
||||
if (elem.partitionType() != Dune::InteriorEntity)
|
||||
continue;
|
||||
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = intQuants.fluidState();
|
||||
|
||||
p += fs.pressure(FluidSystem::oilPhaseIdx).value();
|
||||
T += fs.temperature(FluidSystem::oilPhaseIdx).value();
|
||||
n += 1;
|
||||
}
|
||||
p = gridView.comm().sum(p);
|
||||
T = gridView.comm().sum(T);
|
||||
n = gridView.comm().sum(n);
|
||||
|
||||
p /= n;
|
||||
T /= n;
|
||||
|
||||
calcRmax();
|
||||
}
|
||||
|
||||
/**
|
||||
* Region identifier.
|
||||
*
|
||||
* Integral type.
|
||||
|
||||
@@ -55,6 +55,8 @@ public:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||||
|
||||
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
|
||||
|
||||
@@ -113,7 +115,6 @@ public:
|
||||
defunct_well_names_( defunct_well_names ),
|
||||
is_parallel_run_( false )
|
||||
{
|
||||
|
||||
#if HAVE_MPI
|
||||
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
@@ -143,11 +144,20 @@ public:
|
||||
extractLegacyPoreVolume_();
|
||||
extractLegacyDepth_();
|
||||
|
||||
// communicate the initial solution to ebos
|
||||
if (timer.initialStep()) {
|
||||
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
if (output_writer_.isRestart()) {
|
||||
// This is a restart, populate WellState and ReservoirState state objects from restart file
|
||||
output_writer_.initFromRestartFile(phaseUsage_, grid(), state, prev_well_state, extra);
|
||||
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
|
||||
initHysteresisParams(state);
|
||||
// communicate the restart solution to ebos
|
||||
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
// Create timers and file for writing timing info.
|
||||
@@ -195,6 +205,11 @@ public:
|
||||
prev_well_state,
|
||||
restorefilename,
|
||||
desiredRestoreStep );
|
||||
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
|
||||
initHysteresisParams(state);
|
||||
// communicate the restart solution to ebos
|
||||
convertInput(0, state, ebosSimulator_);
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
DynamicListEconLimited dynamic_list_econ_limited;
|
||||
@@ -239,13 +254,40 @@ public:
|
||||
defunct_well_names_ );
|
||||
const Wells* wells = wells_manager.c_wells();
|
||||
WellState well_state;
|
||||
well_state.init(wells, state, prev_well_state, phaseUsage_);
|
||||
|
||||
// The well state initialize bhp with the cell pressure in the top cell.
|
||||
// We must therefore provide it with updated cell pressures
|
||||
size_t nc = Opm::UgGridHelpers::numCells(grid());
|
||||
std::vector<double> cellPressures(nc, 0.0);
|
||||
const auto& gridView = ebosSimulator_.gridManager().gridView();
|
||||
ElementContext elemCtx(ebosSimulator_);
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
elemIt != elemEndIt;
|
||||
++elemIt)
|
||||
{
|
||||
const auto& elem = *elemIt;
|
||||
if (elem.partitionType() != Dune::InteriorEntity) {
|
||||
continue;
|
||||
}
|
||||
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
|
||||
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = intQuants.fluidState();
|
||||
|
||||
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
||||
cellPressures[cellIdx] = p;
|
||||
}
|
||||
well_state.init(wells, cellPressures, prev_well_state, phaseUsage_);
|
||||
|
||||
// give the polymer and surfactant simulators the chance to do their stuff
|
||||
handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
|
||||
|
||||
// Compute reservoir volumes for RESV controls.
|
||||
computeRESV(timer.currentStepNum(), wells, state, well_state);
|
||||
computeRESV(timer.currentStepNum(), wells, well_state);
|
||||
|
||||
// Run a multiple steps of the solver depending on the time step control.
|
||||
solver_timer.start();
|
||||
@@ -261,11 +303,8 @@ public:
|
||||
|
||||
// Compute orignal fluid in place if this has not been done yet
|
||||
if (originalFluidInPlace.empty()) {
|
||||
solver->model().convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
|
||||
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
|
||||
originalFluidInPlace = solver->computeFluidInPlace(fipnum);
|
||||
originalFluidInPlaceTotals = FIPTotals(originalFluidInPlace, state);
|
||||
originalFluidInPlaceTotals = FIPTotals(originalFluidInPlace);
|
||||
FIPUnitConvert(eclState().getUnits(), originalFluidInPlace);
|
||||
FIPUnitConvert(eclState().getUnits(), originalFluidInPlaceTotals);
|
||||
|
||||
@@ -355,12 +394,19 @@ public:
|
||||
stepReport.reportParam(tstep_os);
|
||||
}
|
||||
|
||||
// We don't need the reservoir state anymore. It is just passed around to avoid
|
||||
// code duplication. Pass empty state instead.
|
||||
if (timer.initialStep()) {
|
||||
ReservoirState stateTrivial(0,0,0);
|
||||
state = stateTrivial;
|
||||
}
|
||||
|
||||
// Increment timer, remember well state.
|
||||
++timer;
|
||||
|
||||
// Compute current fluid in place.
|
||||
currentFluidInPlace = solver->computeFluidInPlace(fipnum);
|
||||
currentFluidInPlaceTotals = FIPTotals(currentFluidInPlace, state);
|
||||
currentFluidInPlaceTotals = FIPTotals(currentFluidInPlace);
|
||||
|
||||
const std::string version = moduleVersionName();
|
||||
|
||||
@@ -449,7 +495,6 @@ protected:
|
||||
|
||||
void computeRESV(const std::size_t step,
|
||||
const Wells* wells,
|
||||
const BlackoilState& x,
|
||||
WellState& xw)
|
||||
{
|
||||
typedef SimFIBODetails::WellMap WellMap;
|
||||
@@ -473,7 +518,7 @@ protected:
|
||||
// to calculate averages over regions that might cross process
|
||||
// borders. This needs to be done by all processes and therefore
|
||||
// outside of the next if statement.
|
||||
rateConverter_.defineState(x, boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation()));
|
||||
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -481,7 +526,7 @@ protected:
|
||||
{
|
||||
if ( global_number_resv_wells )
|
||||
{
|
||||
rateConverter_.defineState(x);
|
||||
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -655,7 +700,7 @@ protected:
|
||||
}
|
||||
|
||||
|
||||
std::vector<double> FIPTotals(const std::vector<std::vector<double>>& fip, const ReservoirState& /* state */)
|
||||
std::vector<double> FIPTotals(const std::vector<std::vector<double>>& fip)
|
||||
{
|
||||
std::vector<double> totals(7,0.0);
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
@@ -850,6 +895,106 @@ protected:
|
||||
}
|
||||
}
|
||||
|
||||
// Used to convert initial Reservoirstate to primary variables in the SolutionVector
|
||||
void convertInput( const int iterationIdx,
|
||||
const ReservoirState& reservoirState,
|
||||
Simulator& simulator ) const
|
||||
{
|
||||
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
|
||||
const Opm::PhaseUsage pu = phaseUsage_;
|
||||
|
||||
const std::vector<bool> active = detail::activePhases(pu);
|
||||
bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
|
||||
bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
|
||||
|
||||
const int numCells = reservoirState.numCells();
|
||||
const int numPhases = phaseUsage_.num_phases;
|
||||
const auto& oilPressure = reservoirState.pressure();
|
||||
const auto& saturations = reservoirState.saturation();
|
||||
const auto& rs = reservoirState.gasoilratio();
|
||||
const auto& rv = reservoirState.rv();
|
||||
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
|
||||
{
|
||||
// set non-switching primary variables
|
||||
PrimaryVariables& cellPv = solution[ cellIdx ];
|
||||
// set water saturation
|
||||
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
|
||||
|
||||
if (has_solvent) {
|
||||
cellPv[BlackoilIndices::solventSaturationIdx] = reservoirState.getCellData( reservoirState.SSOL )[cellIdx];
|
||||
}
|
||||
|
||||
if (has_polymer) {
|
||||
cellPv[BlackoilIndices::polymerConcentrationIdx] = reservoirState.getCellData( reservoirState.POLYMER )[cellIdx];
|
||||
}
|
||||
|
||||
|
||||
// set switching variable and interpretation
|
||||
if ( active[Gas] ) {
|
||||
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
|
||||
{
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
|
||||
}
|
||||
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
|
||||
{
|
||||
// this case (-> gas only with vaporized oil in the gas) is
|
||||
// relatively expensive as it requires to compute the capillary
|
||||
// pressure in order to get the gas phase pressure. (the reason why
|
||||
// ebos uses the gas pressure here is that it makes the common case
|
||||
// of the primary variable switching code fast because to determine
|
||||
// whether the oil phase appears one needs to compute the Rv value
|
||||
// for the saturated gas phase and if this is not available as a
|
||||
// primary variable, it needs to be computed.) luckily for here, the
|
||||
// gas-only case is not too common, so the performance impact of this
|
||||
// is limited.
|
||||
typedef Opm::SimpleModularFluidState<double,
|
||||
/*numPhases=*/3,
|
||||
/*numComponents=*/3,
|
||||
FluidSystem,
|
||||
/*storePressure=*/false,
|
||||
/*storeTemperature=*/false,
|
||||
/*storeComposition=*/false,
|
||||
/*storeFugacity=*/false,
|
||||
/*storeSaturation=*/true,
|
||||
/*storeDensity=*/false,
|
||||
/*storeViscosity=*/false,
|
||||
/*storeEnthalpy=*/false> SatOnlyFluidState;
|
||||
SatOnlyFluidState fluidState;
|
||||
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
|
||||
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
|
||||
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
|
||||
|
||||
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
|
||||
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
|
||||
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
||||
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
|
||||
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
|
||||
}
|
||||
else
|
||||
{
|
||||
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
|
||||
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
|
||||
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
|
||||
}
|
||||
} else {
|
||||
// for oil-water case oil pressure should be used as primary variable
|
||||
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
||||
}
|
||||
}
|
||||
|
||||
// store the solution at the beginning of the time step
|
||||
if( iterationIdx == 0 )
|
||||
{
|
||||
simulator.model().solution( 1 /* timeIdx */ ) = solution;
|
||||
}
|
||||
}
|
||||
|
||||
RateConverterType createRateConverter_() {
|
||||
extractLegacyCellPvtRegionIndex_();
|
||||
RateConverterType rate_converter(phaseUsage_,
|
||||
|
||||
@@ -53,14 +53,20 @@ namespace Opm
|
||||
using BaseType :: numWells;
|
||||
using BaseType :: numPhases;
|
||||
|
||||
template <class State, class PrevWellState>
|
||||
void init(const Wells* wells, const State& state, const PrevWellState& prevState)
|
||||
{
|
||||
init(wells, state.pressure(), prevState);
|
||||
}
|
||||
|
||||
/// Allocate and initialize if wells is non-null. Also tries
|
||||
/// to give useful initial values to the bhp(), wellRates()
|
||||
/// and perfPhaseRates() fields, depending on controls
|
||||
template <class State, class PrevState>
|
||||
void init(const Wells* wells, const State& state, const PrevState& prevState)
|
||||
template <class PrevWellState>
|
||||
void init(const Wells* wells, const std::vector<double>& cellPressures , const PrevWellState& prevState)
|
||||
{
|
||||
// call init on base class
|
||||
BaseType :: init(wells, state);
|
||||
BaseType :: init(wells, cellPressures);
|
||||
|
||||
// if there are no well, do nothing in init
|
||||
if (wells == 0) {
|
||||
@@ -90,7 +96,7 @@ namespace Opm
|
||||
for (int p = 0; p < np; ++p) {
|
||||
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
|
||||
}
|
||||
perfPress()[perf] = state.pressure()[wells->well_cells[perf]];
|
||||
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -61,11 +61,12 @@ namespace Opm
|
||||
/// Allocate and initialize if wells is non-null. Also tries
|
||||
/// to give useful initial values to the bhp(), wellRates()
|
||||
/// and perfPhaseRates() fields, depending on controls
|
||||
template <class State, class PrevState>
|
||||
void init(const Wells* wells, const State& state, const PrevState& prevState, const PhaseUsage& pu)
|
||||
template <class PrevWellState>
|
||||
void init(const Wells* wells, const std::vector<double>& cellPressures, const PrevWellState& prevState, const PhaseUsage& pu)
|
||||
{
|
||||
|
||||
// call init on base class
|
||||
BaseType :: init(wells, state, prevState);
|
||||
BaseType :: init(wells, cellPressures, prevState);
|
||||
|
||||
|
||||
const int nw = wells->number_of_wells;
|
||||
@@ -207,8 +208,8 @@ namespace Opm
|
||||
|
||||
template <class State>
|
||||
void resize(const Wells* wells, const State& state, const PhaseUsage& pu ) {
|
||||
const WellStateFullyImplicitBlackoilDense dummy_state{}; // Init with an empty previous state only resizes
|
||||
init(wells, state, dummy_state, pu) ;
|
||||
const WellStateFullyImplicitBlackoilDense dummy_state{}; // Init with an empty previous state only resizes
|
||||
init(wells, state.pressure(), dummy_state, pu) ;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user