mirror of
				https://github.com/OPM/opm-simulators.git
				synced 2025-02-25 18:55:30 -06:00 
			
		
		
		
	Fix some bad boxes.
Dumux-Svn-Revison: 9012 Ported-By: Andreas Lauser <andreas.lauser@iws.uni-stuttgart.de>
This commit is contained in:
		
				
					committed by
					
						 Andreas Lauser
						Andreas Lauser
					
				
			
			
				
	
			
			
			
						parent
						
							d987ac7fdf
						
					
				
				
					commit
					5c5e098d54
				
			| @@ -30,7 +30,7 @@ where term 1 describes the changes of entity $u$ within a control volume over ti | ||||
|  | ||||
| Like the FE method, the BOX-method follows the principle of weighted residuals. In the function $f(u)$ the unknown $u$ is approximated by discrete values at the nodes of the FE mesh $\hat u_i$ and linear basis functions $N_i$ yielding an approximate function $f(\tilde u)$. For $u\in \lbrace \mathbf v, p, x^\kappa \rbrace$ this means | ||||
|  | ||||
| \begin{minipage}[b]{0.5\textwidth} | ||||
| \begin{minipage}[b]{0.47\textwidth} | ||||
| \begin{equation} | ||||
| \label{eq:p}  | ||||
| 	\tilde p = \sum_i N_i \hat{p_i} | ||||
| @@ -45,7 +45,7 @@ Like the FE method, the BOX-method follows the principle of weighted residuals. | ||||
| \end{equation} | ||||
| \end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}[b]{0.5\textwidth} | ||||
| \begin{minipage}[b]{0.47\textwidth} | ||||
| \begin{equation} | ||||
| \label{eq:dp}  | ||||
| 	\nabla \tilde p = \sum_i \nabla N_i \hat{p_i} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user