Bugfix: we compute no well flux residual for polymer, do not try to use.

This commit is contained in:
Atgeirr Flø Rasmussen 2015-05-25 00:06:17 +02:00
parent 82da34ddd3
commit 5f6027ba01

View File

@ -1908,7 +1908,8 @@ namespace detail {
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx=0; idx<MaxNumPhases; ++idx )
// TODO: code below is wrong, should not compute maxNormWell[MaxNumPhases].
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if (active_[idx]) {
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
@ -1933,7 +1934,7 @@ namespace detail {
maxNormWell[idx] = R_sum[idx] = B_avg[idx] = maxCoeff[idx] = 0.0;
}
}
info.communicator().max(&maxNormWell[0], MaxNumPhases);
info.communicator().max(&maxNormWell[0], MaxNumPhases+1);
// Compute pore volume
#warning Missing polymer code for MPI version
return std::get<1>(nc_and_pv);
@ -1941,9 +1942,9 @@ namespace detail {
else
#endif
{
for ( int idx=0; idx<MaxNumPhases; ++idx )
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if (active_[idx]) {
if (idx == MaxNumPhases || active_[idx]) { // Dealing with polymer *or* an active phase.
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx]=tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
@ -1952,10 +1953,11 @@ namespace detail {
{
R_sum[idx] = B_avg[idx] = maxCoeff[idx] =0.0;
}
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w )
{
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer.
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
if (has_polymer_) {
@ -1992,7 +1994,7 @@ namespace detail {
std::array<double,MaxNumPhases+1> B_avg = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> maxCoeff = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> mass_balance_residual = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> well_flux_residual = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases> well_flux_residual = {{0., 0., 0.}};
std::size_t cols = MaxNumPhases+1; // needed to pass the correct type to Eigen
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> B(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> R(nc, cols);
@ -2029,9 +2031,10 @@ namespace detail {
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
well_flux_residual[idx] = B_avg[idx] * dt * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
if (idx != MaxNumPhases) { // No well flux residual for polymer.
well_flux_residual[idx] = B_avg[idx] * dt * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
@ -2040,27 +2043,27 @@ namespace detail {
const bool converged = converged_MB && converged_CNV && converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
if ( std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
if (std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[MaxNumPhases]) || mass_balance_residual[MaxNumPhases] > maxResidualAllowed() || std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[MaxNumPhases]) || mass_balance_residual[MaxNumPhases] > maxResidualAllowed() ||
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
std::isnan(CNV[MaxNumPhases]) || CNV[MaxNumPhases] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() ||
std::isnan(well_flux_residual[MaxNumPhases]) || well_flux_residual[MaxNumPhases] > maxResidualAllowed() ||
std::isnan(residualWell) || residualWell > maxResidualAllowed() )
{
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or to large!");
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!");
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(POLY) CNVW CNVO CNVG CNVP W-FLUX(W) W-FLUX(O) W-FLUX(G) W-FLUX(P)\n";
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(POLY) CNVW CNVO CNVG CNVP W-FLUX(W) W-FLUX(O) W-FLUX(G)\n";
}
const std::streamsize oprec = std::cout.precision(3);
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
@ -2076,7 +2079,6 @@ namespace detail {
<< std::setw(11) << well_flux_residual[Water]
<< std::setw(11) << well_flux_residual[Oil]
<< std::setw(11) << well_flux_residual[Gas]
<< std::setw(11) << well_flux_residual[MaxNumPhases]
<< std::endl;
std::cout.precision(oprec);
std::cout.flags(oflags);