introduced computeWellTemperature() to be called at each timestep

This commit is contained in:
Paul Egberts
2021-03-08 15:11:50 +01:00
parent 59b6e21cc3
commit 646dafe78f
4 changed files with 66 additions and 67 deletions

View File

@@ -108,6 +108,7 @@ namespace Opm {
static const int solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
@@ -509,6 +510,8 @@ namespace Opm {
void assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const;
void computeWellTemperature();
};

View File

@@ -540,6 +540,9 @@ namespace Opm {
if (terminal_output_) {
global_deferredLogger.logMessages();
}
//reporting output temperatures
this->computeWellTemperature();
}
@@ -703,12 +706,6 @@ namespace Opm {
const SummaryState& summaryState)
{
std::vector<double> cellPressures(this->local_num_cells_, 0.0);
std::vector<double> cellTemperatures(this->local_num_cells_, 0.0);
const int np = numPhases();
std::vector<std::vector<double>> cellInternalEnergy(this->local_num_cells_, std::vector<double>(np));
std::vector<std::vector<double>> cellBinv(this->local_num_cells_, std::vector<double>(np));
std::vector<std::vector<double>> cellDensity(this->local_num_cells_, std::vector<double>(np));
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
@@ -725,16 +722,6 @@ namespace Opm {
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState();
cellTemperatures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)] = fs.temperature(/*phaseIdx*/0).value();
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx)
{
cellInternalEnergy[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)][phaseIdx] = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value();
cellBinv[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)][phaseIdx] = fs.invB(phaseIdx).value();
cellDensity[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)][phaseIdx] = fs.density(phaseIdx).value();
}
// copy of get perfpressure in Standard well except for value
double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)];
if (Indices::oilEnabled) {
@@ -746,7 +733,7 @@ namespace Opm {
}
}
well_state_.init(cellPressures, cellTemperatures, cellInternalEnergy, cellBinv, cellDensity, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx,
well_state_.init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx,
&previous_well_state_, phase_usage_, well_perf_data_,
summaryState, globalNumWells);
}
@@ -3081,4 +3068,57 @@ namespace Opm {
prod = xgr.production;
inj = xgr.injection;
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellTemperature()
{
if (!has_energy_)
return;
int np = numPhases();
double cellInternalEnergy;
double cellBinv;
double cellDensity;
double perfPhaseRate;
const int nw = numLocalWells();
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
const Well& well = wells_ecl_[wellID];
if (well.isInjector())
continue;
int connpos = 0;
for (int i = 0; i < wellID; ++i) {
connpos += well_perf_data_[i].size();
}
connpos *= np;
double weighted_temperature = 0.0;
double total_weight = 0.0;
auto& well_info = *local_parallel_well_info_[wellID];
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[wellID].size());
for (int perf = 0; perf < num_perf_this_well; ++perf) {
const int cell_idx = well_perf_data_[wellID][perf].cell_index;
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
double cellTemperatures = fs.temperature(/*phaseIdx*/0).value();
double weight_factor = 0.0;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
cellInternalEnergy = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value();
cellBinv = fs.invB(phaseIdx).value();
cellDensity = fs.density(phaseIdx).value();
perfPhaseRate = well_state_.perfPhaseRates()[connpos + perf*np + phaseIdx ];
weight_factor += cellDensity * perfPhaseRate/cellBinv * cellInternalEnergy/cellTemperatures;
}
total_weight += weight_factor;
weighted_temperature += weight_factor * cellTemperatures;
}
weighted_temperature = well_info.communication().sum(weighted_temperature);
total_weight = well_info.communication().sum(total_weight);
well_state_.temperature()[wellID] = weighted_temperature/total_weight;
}
}
} // namespace Opm

View File

@@ -39,7 +39,7 @@
namespace Opm
{
/// The state of a set of wells.
class WellState
class WellState
{
public:
typedef std::array< int, 3 > mapentry_t;
@@ -51,11 +51,6 @@ namespace Opm
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
void init(const std::vector<double>& cellPressures,
const std::vector<double>& cellTemperatures,
const std::vector<std::vector<double>>& cellInternalEnergy,
const std::vector<std::vector<double>>& cellBinv,
const std::vector<std::vector<double>>& cellDensity,
const std::vector<double>& perforationRates,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const PhaseUsage& pu,
@@ -78,13 +73,13 @@ namespace Opm
bhp_.resize(nw, 0.0);
thp_.resize(nw, 0.0);
temperature_.resize(nw, 273.15 + 15.56); // standard condition temperature
wellrates_.resize(nw * np, 0.0);
wellrates_.resize(nw * np, 0.0);
int connpos = 0;
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
// Initialize bhp(), thp(), wellRates(), temperature().
initSingleWell(cellPressures, cellTemperatures, cellInternalEnergy, cellBinv, cellDensity, perforationRates, w, well, *parallel_well_info[w], pu, summary_state);
initSingleWell(cellPressures, w, well, *parallel_well_info[w], pu, summary_state);
// Setup wellname -> well index mapping.
const int num_perf_this_well = well_perf_data[w].size();
@@ -358,11 +353,6 @@ namespace Opm
sizes.data(), displ.data(), 0);
}
void initSingleWell(const std::vector<double>& cellPressures,
const std::vector<double>& cellTemperatures,
const std::vector<std::vector<double>>& cellInternalEnergy,
const std::vector<std::vector<double>>& cellBinv,
const std::vector<std::vector<double>>& cellDensity,
const std::vector<double>& perforationRates,
const int w,
const Well& well,
const ParallelWellInfo& well_info,
@@ -383,32 +373,6 @@ namespace Opm
}
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[w].size());
if ( well.isProducer() ) {
int sz = perforationRates.size();
int connpos = 0;
for (int i = 0; i < w; ++i){
connpos += well_perf_data_[i].size();
}
connpos *= np;
double weighted_temperature = 0.0;
double total_weight = 0.0;
if (sz > 0){
for (int i = 0; i < num_perf_this_well; ++i){
int perf_cell_index = well_perf_data_[w][i].cell_index;
double weight_factor = 0.0;
for (int p = 0; p < np; ++p) {
weight_factor += cellDensity[perf_cell_index][p] * perforationRates[connpos + i*np + p]/cellBinv[perf_cell_index][p] * cellInternalEnergy[perf_cell_index][p]/cellTemperatures[perf_cell_index];
}
total_weight += weight_factor;
weighted_temperature += weight_factor * cellTemperatures[perf_cell_index];
}
temperature_[w] = weighted_temperature/total_weight;
}
else {
temperature_[w]=0;
}
}
if ( num_perf_this_well == 0 ) {
// No perforations of the well. Initialize to zero.
bhp_[w] = 0.;
@@ -525,7 +489,7 @@ namespace Opm
protected:
std::vector<std::vector<PerforationData>> well_perf_data_;
std::vector<ParallelWellInfo*> parallel_well_info_;
std::vector<ParallelWellInfo*> parallel_well_info_;
};
} // namespace Opm

View File

@@ -70,10 +70,6 @@ namespace Opm
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
void init(const std::vector<double>& cellPressures,
const std::vector<double>& cellTemperatures,
const std::vector<std::vector<double>>& cellInternalEnergy,
const std::vector<std::vector<double>>& cellBinv,
const std::vector<std::vector<double>>& cellDensity,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
@@ -84,10 +80,8 @@ namespace Opm
const SummaryState& summary_state,
const int globalNumberOfWells)
{
std::vector<double> perforationRates;
perforationRates = prevState->perfphaserates_;
// call init on base class
BaseType :: init(cellPressures, cellTemperatures, cellInternalEnergy, cellBinv, cellDensity, perforationRates, wells_ecl, parallel_well_info, pu, well_perf_data, summary_state);
BaseType :: init(cellPressures, wells_ecl, parallel_well_info, pu, well_perf_data, summary_state);
for (const auto& winfo: parallel_well_info)
{
@@ -185,7 +179,6 @@ namespace Opm
perfRateBrine_.clear();
perfRateBrine_.resize(nperf, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if (prevState && !prevState->wellMap().empty()) {
@@ -355,8 +348,7 @@ namespace Opm
const int globalNumWells)
{
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
std::vector<std::vector<double>> tmp1(numCells, std::vector<double>( numPhases()));// <- UGLY HACK to pass the size
init(tmp, tmp, tmp1, tmp1, tmp1, schedule, wells_ecl, parallel_well_info, 0, nullptr, pu, well_perf_data, summary_state, globalNumWells);
init(tmp, schedule, wells_ecl, parallel_well_info, 0, nullptr, pu, well_perf_data, summary_state, globalNumWells);
if (handle_ms_well) {
initWellStateMSWell(wells_ecl, pu, nullptr);