modified the simulator more general.

This commit is contained in:
Liu Ming 2013-12-17 20:28:32 +08:00
parent 970fe665d8
commit 6d5b90df54
3 changed files with 251 additions and 37 deletions

View File

@ -50,18 +50,23 @@
namespace Opm
{
class SimulatorFullyImplicitTwophase::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropsAdInterface& props,
WellsManager& wells_manager,
LinearSolverInterface& linsolver,
std::vector<double>& src);
std::vector<double>& src,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
std::vector<double>& src);
std::vector<double>& src,
WellState& well_state);
private:
@ -71,9 +76,15 @@ namespace Opm
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Observed objects.
const UnstructuredGrid& grid_;
const IncompPropsAdInterface& props_;
WellsManager& wells_manager_;
const Wells* wells_;
const std::vector<double>& src_;
const double* gravity_;
// Solvers
FullyImplicitTwoPhaseSolver solver_;
// Misc. data
@ -86,10 +97,12 @@ namespace Opm
SimulatorFullyImplicitTwophase::SimulatorFullyImplicitTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropsAdInterface& props,
WellsManager& wells_manager,
LinearSolverInterface& linsolver,
std::vector<double>& src)
std::vector<double>& src,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, linsolver, src));
pimpl_.reset(new Impl(param, grid, props, wells_manager, linsolver, src, gravity));
}
@ -98,9 +111,10 @@ namespace Opm
SimulatorReport SimulatorFullyImplicitTwophase::run(SimulatorTimer& timer,
TwophaseState& state,
std::vector<double>& src)
std::vector<double>& src,
WellState& well_state)
{
return pimpl_->run(timer, state, src);
return pimpl_->run(timer, state, src, well_state);
}
@ -133,6 +147,75 @@ namespace Opm
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
static void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
static void outputWellStateMatlab(const Opm::WellState& well_state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["bhp"] = &well_state.bhp();
dm["wellrates"] = &well_state.wellRates();
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error,"Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error,"Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
/*
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
@ -145,20 +228,36 @@ namespace Opm
}
watercut.write(os);
}
*/
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
*/
SimulatorFullyImplicitTwophase::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropsAdInterface& props,
WellsManager& wells_manager,
LinearSolverInterface& linsolver,
std::vector<double>& src)
std::vector<double>& src,
const double* gravity)
: grid_(grid),
props_(props),
solver_(grid_, props_, linsolver)
wells_manager_(wells_manager),
wells_ (wells_manager.c_wells()),
src_ (src),
gravity_(gravity),
solver_(grid_, props_, *wells_manager.c_wells(), linsolver, gravity_)
{
// For output.
output_ = param.getDefault("output", true);
@ -175,6 +274,9 @@ namespace Opm
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Misc init.
const int num_cells = grid.number_of_cells;
@ -184,16 +286,16 @@ namespace Opm
}
}
SimulatorReport SimulatorFullyImplicitTwophase::Impl::run(SimulatorTimer& timer,
TwophaseState& state,
std::vector<double>& src)
std::vector<double>& src,
WellState& well_state)
{
// Initialisation.
std::vector<double> porevol;
computePorevolume(grid_, props_.porosity(), porevol);
Opm::computePorevolume(grid_, props_.porosity(), porevol);
// const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
@ -203,14 +305,27 @@ namespace Opm
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
#if 0
// These must be changed for three-phase.
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
#endif
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
while (!timer.done()) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
@ -218,34 +333,125 @@ namespace Opm
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Run solver.
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, src);
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, src, well_state);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
sreport.pressure_time = st;
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
sreport.pressure_time = st;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
initial_porevol = porevol;
// The reports below are geared towards two phases only.
#if 0
// Report mass balances.
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
injected, produced);
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance report.\n";
std::cout << " Injected surface volumes: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1] << std::endl;
std::cout << " Produced surface volumes: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1] << std::endl;
std::cout << " Total inj surface volumes: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1] << std::endl;
std::cout << " Total prod surface volumes: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1] << std::endl;
const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::endl;
std::cout.precision(8);
// Make well reports.
watercut.push(timer.currentTime() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
timer.currentTime() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
#endif
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
}
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
#if 0
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
#endif
tstep_os.close();
}
// outputWaterCut(watercut, output_dir_);
tstep_os.close();
// advance to next timestep before reporting at this location
++timer;
// write an output file for later inspection
}
total_timer.stop();
@ -258,4 +464,7 @@ namespace Opm
}
} // namespace Opm

View File

@ -32,6 +32,8 @@ namespace Opm
class LinearSolverInterface;
class SimulatorTimer;
class TwophaseState;
class WellsManager;
class WellState;
struct SimulatorReport;
/// Class collecting all necessary components for a two-phase simulation.
@ -60,8 +62,10 @@ namespace Opm
SimulatorFullyImplicitTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropsAdInterface& props,
WellsManager& wells_manager,
LinearSolverInterface& linsolver,
std::vector<double>& src);
std::vector<double>& src,
const double* gravity);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
@ -72,7 +76,8 @@ namespace Opm
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
std::vector<double>& src);
std::vector<double>& src,
WellState& well_state);
private:
class Impl;