changed: move computeBhpFromThpLimitProd to WellBhpThpCalculator

This commit is contained in:
Arne Morten Kvarving
2022-10-19 09:55:14 +02:00
parent 4fcb1e9d37
commit 6e214557e2
7 changed files with 375 additions and 374 deletions

View File

@@ -28,6 +28,7 @@
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
@@ -406,7 +407,12 @@ computeBhpAtThpLimitProdWithAlq(
DeferredLogger& deferred_logger,
double alq_value) const
{
return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, rho, alq_value, deferred_logger);
return WellBhpThpCalculator(baseif_).computeBhpAtThpLimitProd(frates,
summary_state,
maxPerfPress,
rho,
alq_value,
deferred_logger);
}
template<typename Scalar>

View File

@@ -73,23 +73,6 @@ protected:
DeferredLogger& deferred_logger,
double alq_value) const;
std::optional<double> bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const;
bool bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger) const;
bool bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const;
/// Detect oscillation or stagnation based on the residual measure history
void detectOscillations(const std::vector<double>& measure_history,
const int it,

View File

@@ -35,6 +35,7 @@
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
@@ -158,7 +159,12 @@ computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const do
double maxPerfPress,
double alq_value) const
{
return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, getRho(), alq_value, deferred_logger);
return WellBhpThpCalculator(baseif_).computeBhpAtThpLimitProd(frates,
summary_state,
maxPerfPress,
this->getRho(),
alq_value,
deferred_logger);
}
template<class Scalar>

View File

@@ -22,6 +22,8 @@
#include <config.h>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
@@ -35,6 +37,8 @@
#include <cassert>
static constexpr bool extraBhpAtThpLimitOutput = false;
namespace Opm
{
@@ -128,4 +132,324 @@ double WellBhpThpCalculator::calculateThpFromBhp(const std::vector<double>& rate
return thp;
}
std::optional<double>
WellBhpThpCalculator::
computeBhpAtThpLimitProd(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
const double maxPerfPress,
const double rho,
const double alq_value,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = well_.wellEcl().productionControls(summary_state);
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = this->getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
const bool use_vfpexp = well_.useVfpExplicit();
return well_.vfpProperties()->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value, wfr, gfr, use_vfpexp) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Find the bhp-point where production becomes nonzero.
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
// could not solve for the bhp-point, we could not continue to find the bhp
if (!bhp_max.has_value()) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"find bhp-point where production becomes non-zero for well " + well_.name());
return std::nullopt;
}
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
return this->computeBhpAtThpLimit(frates, fbhp, range, deferred_logger);
}
std::optional<double>
WellBhpThpCalculator::
bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const
{
// Find the bhp-point where production becomes nonzero.
double bhp_max = 0.0;
double low = bhp_limit;
double high = maxPerfPress + 1.0 * unit::barsa;
double f_low = fflo(low);
double f_high = fflo(high);
if constexpr (extraBhpAtThpLimitOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high));
}
int adjustments = 0;
const int max_adjustments = 10;
const double adjust_amount = 5.0 * unit::barsa;
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
// Same sign, adjust high to see if we can flip it.
high += adjust_amount;
f_high = fflo(high);
++adjustments;
}
if (f_low * f_high > 0.0) {
if (f_low > 0.0) {
// Even at the BHP limit, we are injecting.
// There will be no solution here, return an
// empty optional.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to inoperability for well " + well_.name());
return std::nullopt;
} else {
// Still producing, even at high bhp.
assert(f_high < 0.0);
bhp_max = high;
}
} else {
// Bisect to find a bhp point where we produce, but
// not a large amount ('eps' below).
const double eps = 0.1 * std::fabs(vfp_flo_front);
const int maxit = 50;
int it = 0;
while (std::fabs(f_low) > eps && it < maxit) {
const double curr = 0.5*(low + high);
const double f_curr = fflo(curr);
if (f_curr * f_low > 0.0) {
low = curr;
f_low = f_curr;
} else {
high = curr;
f_high = f_curr;
}
++it;
}
if (it < maxit) {
bhp_max = low;
} else {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Bisect did not find the bhp-point where we produce for well " + well_.name());
return std::nullopt;
}
}
if constexpr (extraBhpAtThpLimitOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high) +
" bhp_max = " + std::to_string(bhp_max));
}
return bhp_max;
}
std::optional<double>
WellBhpThpCalculator::
computeBhpAtThpLimit(const std::function<std::vector<double>(const double)>& frates,
const std::function<double(const std::vector<double>)>& fbhp,
const std::array<double, 2>& range,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
// Define the equation we want to solve.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// Find appropriate brackets for the solution.
std::optional<double> approximate_solution;
double low, high;
// trying to use bisect way to locate a bracket
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
// based on the origional design, if an approximate solution is suggested, we use this value directly
// in the long run, we might change it
if (approximate_solution.has_value()) {
return *approximate_solution;
}
if (!finding_bracket) {
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
}
if (!finding_bracket) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"bracket the bhp solution with the brute force search for " + well_.name());
return std::nullopt;
}
// Solve for the proper solution in the given interval.
const int max_iteration = 100;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + well_.name());
return std::nullopt;
}
}
bool
WellBhpThpCalculator::
bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const
{
bool finding_bracket = false;
low = range[0];
high = range[1];
double eq_high = eq(high);
double eq_low = eq(low);
const double eq_bhplimit = eq_low;
if constexpr (extraBhpAtThpLimitOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" eq(low) = " + std::to_string(eq_low) +
" eq(high) = " + std::to_string(eq_high));
}
if (eq_low * eq_high > 0.0) {
// Failed to bracket the zero.
// If this is due to having two solutions, bisect until bracketed.
double abs_low = std::fabs(eq_low);
double abs_high = std::fabs(eq_high);
int bracket_attempts = 0;
const int max_bracket_attempts = 20;
double interval = high - low;
const double min_interval = 1.0 * unit::barsa;
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
if (abs_high < abs_low) {
low = 0.5 * (low + high);
eq_low = eq(low);
abs_low = std::fabs(eq_low);
} else {
high = 0.5 * (low + high);
eq_high = eq(high);
abs_high = std::fabs(eq_high);
}
++bracket_attempts;
}
if (eq_low * eq_high <= 0.) {
// We have a bracket!
finding_bracket = true;
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
// If so, that is the bracket we shall use, choosing the solution with the
// highest flow.
if (eq_low * eq_bhplimit <= 0.0) {
high = low;
low = range[0];
}
} else { // eq_low * eq_high > 0.0
// Still failed bracketing!
const double limit = 0.1 * unit::barsa;
if (std::min(abs_low, abs_high) < limit) {
// Return the least bad solution if less off than 0.1 bar.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) not solved precisely for well " + well_.name());
approximate_solution = abs_low < abs_high ? low : high;
} else {
// Return failure.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) solve failed due to bracketing failure for well " +
well_.name());
}
}
} else {
finding_bracket = true;
}
return finding_bracket;
}
bool
WellBhpThpCalculator::
bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger)
{
bool finding_bracket = false;
low = range[0];
high = range[1];
const int sample_number = 100;
const double interval = (high - low) / sample_number;
double eq_low = eq(low);
double eq_high;
for (int i = 0; i < sample_number + 1; ++i) {
high = range[0] + interval * i;
eq_high = eq(high);
if (eq_high * eq_low <= 0.) {
finding_bracket = true;
break;
}
low = high;
eq_low = eq_high;
}
if (finding_bracket) {
deferred_logger.debug(
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
}
return finding_bracket;
}
} // namespace Opm

View File

@@ -58,7 +58,44 @@ public:
const double alq,
DeferredLogger& deferred_logger) const;
//! \brief Compute BHP from THP limit for a producer.
std::optional<double>
computeBhpAtThpLimitProd(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
const double maxPerfPress,
const double rho,
const double alq_value,
DeferredLogger& deferred_logger) const;
private:
//! \brief Calculate max BHP.
std::optional<double>
bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const;
//! \brief Common code for finding BHP from THP limit for producers/injectors.
std::optional<double>
computeBhpAtThpLimit(const std::function<std::vector<double>(const double)>& frates,
const std::function<double(const std::vector<double>)>& fbhp,
const std::array<double, 2>& range,
DeferredLogger& deferred_logger) const;
//! \brief Find limits using bisection.
bool bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const;
//! \brief Find limits using brute-force solver.
static bool bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger);
const WellInterfaceGeneric& well_; //!< Reference to well interface
};

View File

@@ -417,324 +417,4 @@ void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, Deferr
}
}
std::optional<double>
WellInterfaceGeneric::
bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const
{
// Find the bhp-point where production becomes nonzero.
double bhp_max = 0.0;
double low = bhp_limit;
double high = maxPerfPress + 1.0 * unit::barsa;
double f_low = fflo(low);
double f_high = fflo(high);
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high));
}
int adjustments = 0;
const int max_adjustments = 10;
const double adjust_amount = 5.0 * unit::barsa;
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
// Same sign, adjust high to see if we can flip it.
high += adjust_amount;
f_high = fflo(high);
++adjustments;
}
if (f_low * f_high > 0.0) {
if (f_low > 0.0) {
// Even at the BHP limit, we are injecting.
// There will be no solution here, return an
// empty optional.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to inoperability for well " + this->name());
return std::nullopt;
} else {
// Still producing, even at high bhp.
assert(f_high < 0.0);
bhp_max = high;
}
} else {
// Bisect to find a bhp point where we produce, but
// not a large amount ('eps' below).
const double eps = 0.1 * std::fabs(vfp_flo_front);
const int maxit = 50;
int it = 0;
while (std::fabs(f_low) > eps && it < maxit) {
const double curr = 0.5*(low + high);
const double f_curr = fflo(curr);
if (f_curr * f_low > 0.0) {
low = curr;
f_low = f_curr;
} else {
high = curr;
f_high = f_curr;
}
++it;
}
if (it < maxit) {
bhp_max = low;
} else {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Bisect did not find the bhp-point where we produce for well " + this->name());
return std::nullopt;
}
}
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high) +
" bhp_max = " + std::to_string(bhp_max));
}
return bhp_max;
}
bool
WellInterfaceGeneric::
bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const
{
bool finding_bracket = false;
low = range[0];
high = range[1];
double eq_high = eq(high);
double eq_low = eq(low);
const double eq_bhplimit = eq_low;
if constexpr (extraBhpAtThpLimitProdOutput) {
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + this->name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" eq(low) = " + std::to_string(eq_low) +
" eq(high) = " + std::to_string(eq_high));
}
if (eq_low * eq_high > 0.0) {
// Failed to bracket the zero.
// If this is due to having two solutions, bisect until bracketed.
double abs_low = std::fabs(eq_low);
double abs_high = std::fabs(eq_high);
int bracket_attempts = 0;
const int max_bracket_attempts = 20;
double interval = high - low;
const double min_interval = 1.0 * unit::barsa;
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
if (abs_high < abs_low) {
low = 0.5 * (low + high);
eq_low = eq(low);
abs_low = std::fabs(eq_low);
} else {
high = 0.5 * (low + high);
eq_high = eq(high);
abs_high = std::fabs(eq_high);
}
++bracket_attempts;
}
if (eq_low * eq_high <= 0.) {
// We have a bracket!
finding_bracket = true;
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
// If so, that is the bracket we shall use, choosing the solution with the
// highest flow.
if (eq_low * eq_bhplimit <= 0.0) {
high = low;
low = range[0];
}
} else { // eq_low * eq_high > 0.0
// Still failed bracketing!
const double limit = 0.1 * unit::barsa;
if (std::min(abs_low, abs_high) < limit) {
// Return the least bad solution if less off than 0.1 bar.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) not solved precisely for well " + this->name());
approximate_solution = abs_low < abs_high ? low : high;
} else {
// Return failure.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) solve failed due to bracketing failure for well " +
this->name());
}
}
} else {
finding_bracket = true;
}
return finding_bracket;
}
bool
WellInterfaceGeneric::
bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger) const
{
bool finding_bracket = false;
low = range[0];
high = range[1];
const int sample_number = 100;
const double interval = (high - low) / sample_number;
double eq_low = eq(low);
double eq_high;
for (int i = 0; i < sample_number + 1; ++i) {
high = range[0] + interval * i;
eq_high = eq(high);
if (eq_high * eq_low <= 0.) {
finding_bracket = true;
break;
}
low = high;
eq_low = eq_high;
}
if (finding_bracket) {
deferred_logger.debug(
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
}
return finding_bracket;
}
std::optional<double>
WellInterfaceGeneric::
computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
const double maxPerfPress,
const double rho,
const double alq_value,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = this->wellEcl().productionControls(summary_state);
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = this->getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(this->refDepth(), vfp_ref_depth, rho, this->gravity());
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
const auto& wfr = this->vfpProperties()->getExplicitWFR(controls.vfp_table_number, this->indexOfWell());
const auto& gfr = this->vfpProperties()->getExplicitGFR(controls.vfp_table_number, this->indexOfWell());
const bool use_vfpexp = this->useVfpExplicit();
return this->vfpProperties()->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value, wfr, gfr, use_vfpexp) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Find the bhp-point where production becomes nonzero.
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
// could not solve for the bhp-point, we could not continue to find the bhp
if (!bhp_max.has_value()) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"find bhp-point where production becomes non-zero for well " + this->name());
return std::nullopt;
}
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
return computeBhpAtThpLimitCommon(frates, fbhp, range, deferred_logger);
}
std::optional<double>
WellInterfaceGeneric::
computeBhpAtThpLimitCommon(const std::function<std::vector<double>(const double)>& frates,
const std::function<double(const std::vector<double>)>& fbhp,
const std::array<double, 2>& range,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
// Define the equation we want to solve.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// Find appropriate brackets for the solution.
std::optional<double> approximate_solution;
double low, high;
// trying to use bisect way to locate a bracket
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
// based on the origional design, if an approximate solution is suggested, we use this value directly
// in the long run, we might change it
if (approximate_solution.has_value()) {
return *approximate_solution;
}
if (!finding_bracket) {
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
}
if (!finding_bracket) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to not being able to "
"bracket the bhp solution with the brute force search for " + this->name());
return std::nullopt;
}
// Solve for the proper solution in the given interval.
const int max_iteration = 100;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + this->name());
return std::nullopt;
}
}
} // namespace Opm

View File

@@ -50,9 +50,6 @@ class Schedule;
class WellInterfaceGeneric {
public:
static constexpr bool extraBhpAtThpLimitProdOutput = false;
WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
@@ -189,13 +186,6 @@ public:
bool changedToOpenThisStep() const {
return this->changed_to_open_this_step_;
}
std::optional<double> computeBhpAtThpLimitProdCommon(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
const double maxPerfPress,
const double rho,
const double alq_value,
DeferredLogger& deferred_logger
) const;
void updateWellTestState(const SingleWellState& ws,
const double& simulationTime,
@@ -206,31 +196,6 @@ public:
protected:
bool getAllowCrossFlow() const;
std::optional<double> bhpMax(const std::function<double(const double)>& fflo,
const double bhp_limit,
const double maxPerfPress,
const double vfp_flo_front,
DeferredLogger& deferred_logger) const;
std::optional<double> computeBhpAtThpLimitCommon(
const std::function<std::vector<double>(const double)>& frates,
const std::function<double(const std::vector<double>)>& fbhp,
const std::array<double, 2>& range,
DeferredLogger& deferred_logger) const;
bool bruteForceBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
DeferredLogger& deferred_logger) const;
bool bisectBracket(const std::function<double(const double)>& eq,
const std::array<double, 2>& range,
double& low, double& high,
std::optional<double>& approximate_solution,
DeferredLogger& deferred_logger) const;
// definition of the struct OperabilityStatus
struct OperabilityStatus {
bool isOperableAndSolvable() const {