mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Remove changes not needed for a minimal PR.
This commit is contained in:
@@ -1,609 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::BlackOilIntensiveQuantities
|
||||
*/
|
||||
#ifndef EWOMS_BLACK_OIL_INTENSIVE_SIMPLE_QUANTITIES_HH
|
||||
#define EWOMS_BLACK_OIL_INTENSIVE_SIMPLE_QUANTITIES_HH
|
||||
|
||||
#include "blackoilproperties.hh"
|
||||
#include "blackoilsolventmodules.hh"
|
||||
#include "blackoilextbomodules.hh"
|
||||
#include "blackoilpolymermodules.hh"
|
||||
#include "blackoilfoammodules.hh"
|
||||
#include "blackoilbrinemodules.hh"
|
||||
#include "blackoilenergymodules.hh"
|
||||
#include "blackoildiffusionmodule.hh"
|
||||
#include "blackoilmicpmodules.hh"
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
#include <opm/material/common/Valgrind.hpp>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
#include <cstring>
|
||||
#include <utility>
|
||||
|
||||
namespace Opm {
|
||||
/*!
|
||||
* \ingroup BlackOilModel
|
||||
* \ingroup IntensiveQuantities
|
||||
*
|
||||
* \brief Contains the quantities which are are constant within a
|
||||
* finite volume in the black-oil model.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class BlackOilIntensiveQuantitiesSimple
|
||||
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
|
||||
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
|
||||
, public BlackOilDiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
|
||||
, public BlackOilSolventIntensiveQuantities<TypeTag>
|
||||
, public BlackOilExtboIntensiveQuantities<TypeTag>
|
||||
, public BlackOilPolymerIntensiveQuantities<TypeTag>
|
||||
, public BlackOilFoamIntensiveQuantities<TypeTag>
|
||||
, public BlackOilBrineIntensiveQuantities<TypeTag>
|
||||
, public BlackOilEnergyIntensiveQuantities<TypeTag>
|
||||
, public BlackOilMICPIntensiveQuantities<TypeTag>
|
||||
{
|
||||
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
|
||||
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
||||
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
||||
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
|
||||
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
|
||||
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
|
||||
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
|
||||
enum { enableEvaporation = getPropValue<TypeTag, Properties::EnableEvaporation>() };
|
||||
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
|
||||
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
|
||||
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
||||
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
||||
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
|
||||
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
||||
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
||||
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
||||
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
||||
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
||||
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
||||
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
||||
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
|
||||
|
||||
static const bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
|
||||
static const bool waterEnabled = Indices::waterEnabled;
|
||||
static const bool gasEnabled = Indices::gasEnabled;
|
||||
static const bool oilEnabled = Indices::oilEnabled;
|
||||
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
||||
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
||||
using DiffusionIntensiveQuantities = BlackOilDiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
|
||||
|
||||
public:
|
||||
using FluidState = BlackOilFluidState<Evaluation,
|
||||
FluidSystem,
|
||||
enableTemperature,
|
||||
enableEnergy,
|
||||
compositionSwitchEnabled,
|
||||
enableEvaporation,
|
||||
enableBrine,
|
||||
enableSaltPrecipitation,
|
||||
Indices::numPhases>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
|
||||
BlackOilIntensiveQuantitiesSimple()
|
||||
{
|
||||
if (compositionSwitchEnabled) {
|
||||
fluidState_.setRs(0.0);
|
||||
fluidState_.setRv(0.0);
|
||||
}
|
||||
}
|
||||
|
||||
BlackOilIntensiveQuantitiesSimple(const BlackOilIntensiveQuantitiesSimple& other) = default;
|
||||
|
||||
BlackOilIntensiveQuantitiesSimple& operator=(const BlackOilIntensiveQuantitiesSimple& other) = default;
|
||||
|
||||
/*!
|
||||
* \copydoc IntensiveQuantities::update
|
||||
*/
|
||||
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
||||
{
|
||||
const auto& problem = elemCtx.problem();
|
||||
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
||||
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
||||
update(problem, priVars, globalSpaceIdx, timeIdx);
|
||||
}
|
||||
|
||||
void update(const Problem& problem,const PrimaryVariables& priVars, unsigned globalSpaceIdx, unsigned timeIdx)
|
||||
{
|
||||
ParentType::update(problem, priVars, globalSpaceIdx, timeIdx);
|
||||
|
||||
const auto& linearizationType = problem.model().linearizer().getLinearizationType();
|
||||
Scalar RvMax = FluidSystem::enableVaporizedOil()
|
||||
? problem.maxOilVaporizationFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
Scalar RsMax = FluidSystem::enableDissolvedGas()
|
||||
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
|
||||
// asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
unsigned pvtRegionIdx = priVars.pvtRegionIndex();
|
||||
fluidState_.setPvtRegionIndex(pvtRegionIdx);
|
||||
|
||||
//asImp_().updateSaltConcentration_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// extract the water and the gas saturations for convenience
|
||||
Evaluation Sw = 0.0;
|
||||
if (waterEnabled) {
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::OnePhase_p) {
|
||||
Sw = 1.0;
|
||||
} else if (priVars.primaryVarsMeaning() != PrimaryVariables::Rvw_po_Sg && priVars.primaryVarsMeaning() != PrimaryVariables::Rvw_pg_Rv) {
|
||||
Sw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
Evaluation Sg = 0.0;
|
||||
if (compositionSwitchEnabled)
|
||||
{
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
// -> threephase case
|
||||
assert( priVars.primaryVarsMeaning() != PrimaryVariables::OnePhase_p );
|
||||
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
} else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
// -> gas-water case
|
||||
Sg = 1.0 - Sw;
|
||||
|
||||
// deal with solvent
|
||||
if (enableSolvent)
|
||||
Sg -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
|
||||
|
||||
} else if (priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_po_Sg) {
|
||||
// -> oil-gas case
|
||||
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
} else if (priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_pg_Rv) {
|
||||
// -> gas case
|
||||
Sg = 1.0;
|
||||
} else
|
||||
{
|
||||
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs);
|
||||
// -> oil-water case
|
||||
Sg = 0.0;
|
||||
}
|
||||
}
|
||||
if (gasEnabled && waterEnabled && !oilEnabled) {
|
||||
Sg = 1.0 - Sw;
|
||||
}
|
||||
|
||||
Valgrind::CheckDefined(Sg);
|
||||
Valgrind::CheckDefined(Sw);
|
||||
|
||||
Evaluation So = 1.0 - Sw - Sg;
|
||||
|
||||
// deal with solvent
|
||||
if (enableSolvent)
|
||||
So -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
|
||||
|
||||
if (FluidSystem::phaseIsActive(waterPhaseIdx))
|
||||
fluidState_.setSaturation(waterPhaseIdx, Sw);
|
||||
|
||||
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
||||
fluidState_.setSaturation(gasPhaseIdx, Sg);
|
||||
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
||||
fluidState_.setSaturation(oilPhaseIdx, So);
|
||||
|
||||
//asImp_().solventPreSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// now we compute all phase pressures
|
||||
Evaluation pC[numPhases];
|
||||
const auto& materialParams = problem.materialLawParams(globalSpaceIdx);
|
||||
//const auto& materialParams = problem.materialLawParams(0);//NB improve speed
|
||||
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
|
||||
|
||||
// oil is the reference phase for pressure
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv || priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_pg_Rv) {
|
||||
const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
if (FluidSystem::phaseIsActive(phaseIdx))
|
||||
fluidState_.setPressure(phaseIdx, pg + (pC[phaseIdx] - pC[gasPhaseIdx]));
|
||||
}
|
||||
|
||||
else {
|
||||
const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
if (FluidSystem::phaseIsActive(phaseIdx))
|
||||
fluidState_.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
|
||||
}
|
||||
|
||||
// calculate relative permeabilities. note that we store the result into the
|
||||
// mobility_ class attribute. the division by the phase viscosity happens later.
|
||||
MaterialLaw::relativePermeabilities(mobility_, materialParams, fluidState_);
|
||||
Valgrind::CheckDefined(mobility_);
|
||||
|
||||
// update the Saturation functions for the blackoil solvent module.
|
||||
//asImp_().solventPostSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// update extBO parameters
|
||||
//asImp_().zFractionUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
Evaluation SoMax = 0.0;
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
SoMax = max(fluidState_.saturation(oilPhaseIdx),
|
||||
problem.maxOilSaturation(globalSpaceIdx));
|
||||
}
|
||||
|
||||
// take the meaning of the switching primary variable into account for the gas
|
||||
// and oil phase compositions
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
// in the threephase case, gas and oil phases are potentially present, i.e.,
|
||||
// we use the compositions of the gas-saturated oil and oil-saturated gas.
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
fluidState_.setRs(min(RsMax, RsSat));
|
||||
}
|
||||
else if (compositionSwitchEnabled)
|
||||
fluidState_.setRs(0.0);
|
||||
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
fluidState_.setRv(min(RvMax, RvSat));
|
||||
}
|
||||
else if (compositionSwitchEnabled)
|
||||
fluidState_.setRv(0.0);
|
||||
|
||||
if (FluidSystem::enableVaporizedWater()) {
|
||||
const Evaluation& RvwSat = FluidSystem::saturatedVaporizationFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx);
|
||||
fluidState_.setRvw(RvwSat);
|
||||
}
|
||||
}
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_po_Sg) {
|
||||
// The switching variable is the water-gas ratio Rvw
|
||||
const auto& Rvw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
||||
fluidState_.setRvw(Rvw);
|
||||
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
fluidState_.setRv(min(RvMax, RvSat));
|
||||
}
|
||||
else if (compositionSwitchEnabled)
|
||||
fluidState_.setRv(0.0);
|
||||
}
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_pg_Rv) {
|
||||
// The switching variable is the water-gas ratio Rvw
|
||||
const auto& Rvw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
||||
fluidState_.setRvw(Rvw);
|
||||
|
||||
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRv(Rv);
|
||||
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
// the oil phase is not present, but we need to compute its "composition" for
|
||||
// the gravity correction anyway
|
||||
const auto& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
|
||||
fluidState_.setRs(min(RsMax, RsSat));
|
||||
}
|
||||
else {
|
||||
fluidState_.setRs(0.0);
|
||||
}
|
||||
}
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
||||
// if the switching variable is the mole fraction of the gas component in the
|
||||
// oil phase, we can directly set the composition of the oil phase
|
||||
const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRs(min(RsMax, Rs));
|
||||
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
// the gas phase is not present, but we need to compute its "composition"
|
||||
// for the gravity correction anyway
|
||||
const auto& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
|
||||
fluidState_.setRv(min(RvMax, RvSat));
|
||||
}
|
||||
else
|
||||
fluidState_.setRv(0.0);
|
||||
|
||||
if (FluidSystem::enableVaporizedWater()) {
|
||||
const Evaluation& RvwSat = FluidSystem::saturatedVaporizationFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx);
|
||||
fluidState_.setRvw(RvwSat);
|
||||
}
|
||||
}
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRv(Rv);
|
||||
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
// the oil phase is not present, but we need to compute its "composition" for
|
||||
// the gravity correction anyway
|
||||
const auto& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
|
||||
fluidState_.setRs(min(RsMax, RsSat));
|
||||
} else {
|
||||
fluidState_.setRs(0.0);
|
||||
}
|
||||
|
||||
if (FluidSystem::enableVaporizedWater()) {
|
||||
const Evaluation& RvwSat = FluidSystem::saturatedVaporizationFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
pvtRegionIdx);
|
||||
fluidState_.setRvw(RvwSat);
|
||||
}
|
||||
} else {
|
||||
assert(priVars.primaryVarsMeaning() == PrimaryVariables::OnePhase_p);
|
||||
}
|
||||
|
||||
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
||||
paramCache.setRegionIndex(pvtRegionIdx);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
paramCache.setMaxOilSat(SoMax);
|
||||
}
|
||||
paramCache.updateAll(fluidState_);
|
||||
|
||||
// compute the phase densities and transform the phase permeabilities into mobilities
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
|
||||
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState_, phaseIdx, pvtRegionIdx);
|
||||
fluidState_.setInvB(phaseIdx, b);
|
||||
|
||||
const auto& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
|
||||
if (enableExtbo && phaseIdx == oilPhaseIdx)
|
||||
mobility_[phaseIdx] /= asImp_().oilViscosity();
|
||||
else if (enableExtbo && phaseIdx == gasPhaseIdx)
|
||||
mobility_[phaseIdx] /= asImp_().gasViscosity();
|
||||
else
|
||||
mobility_[phaseIdx] /= mu;
|
||||
}
|
||||
Valgrind::CheckDefined(mobility_);
|
||||
|
||||
// calculate the phase densities
|
||||
Evaluation rho;
|
||||
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
|
||||
rho = fluidState_.invB(waterPhaseIdx);
|
||||
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
||||
fluidState_.setDensity(waterPhaseIdx, rho);
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
|
||||
rho = fluidState_.invB(gasPhaseIdx);
|
||||
rho *= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
rho +=
|
||||
fluidState_.invB(gasPhaseIdx) *
|
||||
fluidState_.Rv() *
|
||||
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
if (FluidSystem::enableVaporizedWater()) {
|
||||
rho +=
|
||||
fluidState_.invB(gasPhaseIdx) *
|
||||
fluidState_.Rvw() *
|
||||
FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
fluidState_.setDensity(gasPhaseIdx, rho);
|
||||
}
|
||||
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
||||
rho = fluidState_.invB(oilPhaseIdx);
|
||||
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
rho +=
|
||||
fluidState_.invB(oilPhaseIdx) *
|
||||
fluidState_.Rs() *
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
fluidState_.setDensity(oilPhaseIdx, rho);
|
||||
}
|
||||
|
||||
// retrieve the porosity from the problem
|
||||
referencePorosity_ = problem.porosity(globalSpaceIdx, timeIdx);
|
||||
porosity_ = referencePorosity_;
|
||||
|
||||
// the porosity must be modified by the compressibility of the
|
||||
// rock...
|
||||
Scalar rockCompressibility = problem.rockCompressibility(globalSpaceIdx);
|
||||
if (rockCompressibility > 0.0) {
|
||||
Scalar rockRefPressure = problem.rockReferencePressure(globalSpaceIdx);
|
||||
Evaluation x;
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
||||
x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
|
||||
} else if (FluidSystem::phaseIsActive(waterPhaseIdx)){
|
||||
x = rockCompressibility*(fluidState_.pressure(waterPhaseIdx) - rockRefPressure);
|
||||
} else {
|
||||
x = rockCompressibility*(fluidState_.pressure(gasPhaseIdx) - rockRefPressure);
|
||||
}
|
||||
porosity_ *= 1.0 + x + 0.5*x*x;
|
||||
}
|
||||
|
||||
// deal with water induced rock compaction
|
||||
porosity_ *= problem.template rockCompPoroMultiplier<Evaluation>(*this, globalSpaceIdx);
|
||||
|
||||
// the MICP processes change the porosity
|
||||
if (enableMICP){
|
||||
Evaluation biofilm_ = priVars.makeEvaluation(Indices::biofilmConcentrationIdx, timeIdx, linearizationType);
|
||||
Evaluation calcite_ = priVars.makeEvaluation(Indices::calciteConcentrationIdx, timeIdx, linearizationType);
|
||||
porosity_ += - biofilm_ - calcite_;
|
||||
}
|
||||
|
||||
// deal with salt-precipitation
|
||||
if (enableSaltPrecipitation && priVars.primaryVarsMeaningBrine() == PrimaryVariables::Sp) {
|
||||
Evaluation Sp = priVars.makeEvaluation(Indices::saltConcentrationIdx, timeIdx);
|
||||
porosity_ *= (1.0 - Sp);
|
||||
}
|
||||
|
||||
rockCompTransMultiplier_ = problem.template rockCompTransMultiplier<Evaluation>(*this, globalSpaceIdx);
|
||||
|
||||
// asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
// asImp_().zPvtUpdate_();
|
||||
// asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
// asImp_().updateEnergyQuantities_(elemCtx, dofIdx, timeIdx, paramCache);
|
||||
// asImp_().foamPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
// asImp_().MICPPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
// asImp_().saltPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// // update the quantities which are required by the chosen
|
||||
// // velocity model
|
||||
// FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// // update the diffusion specific quantities of the intensive quantities
|
||||
// DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
||||
|
||||
#ifndef NDEBUG
|
||||
// some safety checks in debug mode
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
|
||||
assert(isfinite(fluidState_.density(phaseIdx)));
|
||||
assert(isfinite(fluidState_.saturation(phaseIdx)));
|
||||
assert(isfinite(fluidState_.temperature(phaseIdx)));
|
||||
assert(isfinite(fluidState_.pressure(phaseIdx)));
|
||||
assert(isfinite(fluidState_.invB(phaseIdx)));
|
||||
}
|
||||
assert(isfinite(fluidState_.Rs()));
|
||||
assert(isfinite(fluidState_.Rv()));
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleIntensiveQuantities::fluidState
|
||||
*/
|
||||
const FluidState& fluidState() const
|
||||
{ return fluidState_; }
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleIntensiveQuantities::mobility
|
||||
*/
|
||||
const Evaluation& mobility(unsigned phaseIdx) const
|
||||
{ return mobility_[phaseIdx]; }
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleIntensiveQuantities::porosity
|
||||
*/
|
||||
const Evaluation& porosity() const
|
||||
{ return porosity_; }
|
||||
|
||||
/*!
|
||||
* The pressure-dependent transmissibility multiplier due to rock compressibility.
|
||||
*/
|
||||
const Evaluation& rockCompTransMultiplier() const
|
||||
{ return rockCompTransMultiplier_; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the index of the PVT region used to calculate the thermodynamic
|
||||
* quantities.
|
||||
*
|
||||
* This allows to specify different Pressure-Volume-Temperature (PVT) relations in
|
||||
* different parts of the spatial domain. Note that this concept should be seen as a
|
||||
* work-around of the fact that the black-oil model does not capture the
|
||||
* thermodynamics well enough. (Because there is, err, only a single real world with
|
||||
* in which all substances follow the same physical laws and hence the same
|
||||
* thermodynamics.) Anyway: Since the ECL file format uses multiple PVT regions, we
|
||||
* support it as well in our black-oil model. (Note that, if it is not explicitly
|
||||
* specified, the PVT region index is 0.)
|
||||
*/
|
||||
auto pvtRegionIndex() const
|
||||
-> decltype(std::declval<FluidState>().pvtRegionIndex())
|
||||
{ return fluidState_.pvtRegionIndex(); }
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
|
||||
*/
|
||||
Evaluation relativePermeability(unsigned phaseIdx) const
|
||||
{
|
||||
// warning: slow
|
||||
return fluidState_.viscosity(phaseIdx)*mobility(phaseIdx);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the porosity of the rock at reference conditions.
|
||||
*
|
||||
* I.e., the porosity of rock which is not perturbed by pressure and temperature
|
||||
* changes.
|
||||
*/
|
||||
Scalar referencePorosity() const
|
||||
{ return referencePorosity_; }
|
||||
|
||||
private:
|
||||
friend BlackOilSolventIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilExtboIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilPolymerIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilEnergyIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilFoamIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilBrineIntensiveQuantities<TypeTag>;
|
||||
friend BlackOilMICPIntensiveQuantities<TypeTag>;
|
||||
|
||||
|
||||
Implementation& asImp_()
|
||||
{ return *static_cast<Implementation*>(this); }
|
||||
|
||||
FluidState fluidState_;
|
||||
Scalar referencePorosity_;
|
||||
Evaluation porosity_;
|
||||
Evaluation rockCompTransMultiplier_;
|
||||
Evaluation mobility_[numPhases];
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
||||
@@ -96,28 +96,29 @@ public:
|
||||
* \copydoc FvBaseLocalResidual::computeStorage
|
||||
*/
|
||||
template <class LhsEval>
|
||||
static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned dofIdx,
|
||||
unsigned timeIdx)
|
||||
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned dofIdx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
// retrieve the intensive quantities for the SCV at the specified point in time
|
||||
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
||||
computeStorage(storage,
|
||||
intQuants);
|
||||
}
|
||||
const auto& fs = intQuants.fluidState();
|
||||
|
||||
/*!
|
||||
* Compute storage term without using the element context.
|
||||
*/
|
||||
template <class LhsEval>
|
||||
static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
||||
const IntensiveQuantities& intQuants)
|
||||
{
|
||||
storage = 0.0;
|
||||
|
||||
const auto& fs = intQuants.fluidState();
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
||||
if (Indices::numPhases == 3) { // add trivial equation for the pseudo phase
|
||||
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
||||
if (timeIdx == 0)
|
||||
storage[conti0EqIdx + activeCompIdx] = variable<LhsEval>(0.0, conti0EqIdx + activeCompIdx);
|
||||
else
|
||||
storage[conti0EqIdx + activeCompIdx] = 0.0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
||||
LhsEval surfaceVolume =
|
||||
Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
|
||||
|
||||
@@ -363,7 +363,7 @@ class FvBaseDiscretization
|
||||
|
||||
using LocalLinearizer = GetPropType<TypeTag, Properties::LocalLinearizer>;
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
|
||||
enum {
|
||||
numEq = getPropValue<TypeTag, Properties::NumEq>(),
|
||||
historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>(),
|
||||
@@ -402,6 +402,7 @@ class FvBaseDiscretization
|
||||
using DiscreteFunction = Dune::Fem::ISTLBlockVectorDiscreteFunction<DiscreteFunctionSpace, PrimaryVariables>;
|
||||
|
||||
// problem restriction and prolongation operator for adaptation
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem> ;
|
||||
using ProblemRestrictProlongOperator = typename Problem :: RestrictProlongOperator ;
|
||||
|
||||
// discrete function restriction and prolongation operator for adaptation
|
||||
@@ -783,43 +784,6 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
void invalidateAndUpdateIntensiveSingleQuantitiesSimple(const Problem& problem,
|
||||
const PrimaryVariables& primaryVar,
|
||||
unsigned dofIdx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
//invalidateIntensiveQuantitiesCache(timeIdx);
|
||||
auto& intquant = intensiveQuantityCache_[timeIdx][dofIdx];
|
||||
intquant.update(problem, primaryVar, dofIdx, timeIdx);
|
||||
intensiveQuantityCacheUpToDate_[timeIdx][dofIdx] = true;
|
||||
}
|
||||
|
||||
void invalidateAndUpdateIntensiveQuantitiesSimple(const Problem& problem,
|
||||
const SolutionVector& primaryVars,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
//invalidateIntensiveQuantitiesCache(timeIdx);
|
||||
size_t numGridDof = primaryVars.size();
|
||||
// omp_sched_t kind;
|
||||
// int chunk;
|
||||
//omp_get_schedule(&kind, &chunk);
|
||||
//printf("%d %d\n", kind, chunk);
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++dofIdx) {
|
||||
const auto& primaryVar = primaryVars[dofIdx];
|
||||
auto& intquant = intensiveQuantityCache_[timeIdx][dofIdx];
|
||||
intquant.update(problem, primaryVar, dofIdx, timeIdx);
|
||||
}
|
||||
|
||||
std::fill(intensiveQuantityCacheUpToDate_[timeIdx].begin(),
|
||||
intensiveQuantityCacheUpToDate_[timeIdx].end(),
|
||||
/*value=*/true);
|
||||
// loop over all elements...
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Move the intensive quantities for a given time index to the back.
|
||||
*
|
||||
|
||||
@@ -46,8 +46,6 @@ class FvBaseIntensiveQuantities
|
||||
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
||||
|
||||
public:
|
||||
// default constructor
|
||||
@@ -71,15 +69,6 @@ public:
|
||||
unsigned timeIdx)
|
||||
{ extrusionFactor_ = elemCtx.problem().extrusionFactor(elemCtx, dofIdx, timeIdx); }
|
||||
|
||||
/*!
|
||||
* \brief Update all quantities for a given control volume.
|
||||
*/
|
||||
void update(const Problem& problem,
|
||||
const PrimaryVariables& /* primaryVars */,
|
||||
unsigned /* globalSpaceIdx */,
|
||||
unsigned /* timeIdx */)
|
||||
{ extrusionFactor_ = problem.extrusionFactor(); }
|
||||
|
||||
/*!
|
||||
* \brief Return how much a given sub-control volume is extruded.
|
||||
*
|
||||
|
||||
@@ -1,630 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FvBaseElementContext
|
||||
*/
|
||||
#ifndef EWOMS_SMALL_ELEMENT_CONTEXT_HH
|
||||
#define EWOMS_SMALL_ELEMENT_CONTEXT_HH
|
||||
|
||||
#include "fvbaseproperties.hh"
|
||||
|
||||
#include <opm/models/discretization/common/linearizationtype.hh>
|
||||
#include <opm/models/utils/alignedallocator.hh>
|
||||
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \ingroup FiniteVolumeDiscretizations
|
||||
*
|
||||
* \brief This class stores an array of IntensiveQuantities objects, one
|
||||
* intensive quantities object for each of the element's vertices
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class SmallElementContext
|
||||
{
|
||||
using Implementation = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
||||
|
||||
// the history size of the time discretization in number of steps
|
||||
enum { timeDiscHistorySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
||||
|
||||
struct DofStore_ {
|
||||
IntensiveQuantities intensiveQuantities[timeDiscHistorySize];
|
||||
const PrimaryVariables* priVars[timeDiscHistorySize];
|
||||
const IntensiveQuantities *thermodynamicHint[timeDiscHistorySize];
|
||||
};
|
||||
using DofVarsVector = std::vector<DofStore_>;
|
||||
using ExtensiveQuantitiesVector = std::vector<ExtensiveQuantities>;
|
||||
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Model = GetPropType<TypeTag, Properties::Model>;
|
||||
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
||||
using GradientCalculator = GetPropType<TypeTag, Properties::GradientCalculator>;
|
||||
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
||||
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
|
||||
static const unsigned dimWorld = GridView::dimensionworld;
|
||||
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
|
||||
|
||||
using CoordScalar = typename GridView::ctype;
|
||||
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
|
||||
|
||||
// we don't allow copies of element contexts!
|
||||
SmallElementContext(const SmallElementContext& ) = delete;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief The constructor.
|
||||
*/
|
||||
explicit SmallElementContext(const Simulator& simulator)
|
||||
: gridView_(simulator.gridView())
|
||||
, stencil_(gridView_, simulator.model().dofMapper() )
|
||||
{
|
||||
// remember the simulator object
|
||||
simulatorPtr_ = &simulator;
|
||||
enableStorageCache_ = EWOMS_GET_PARAM(TypeTag, bool, EnableStorageCache);
|
||||
stashedDofIdx_ = -1;
|
||||
focusDofIdx_ = -1;
|
||||
}
|
||||
|
||||
static void *operator new(size_t size)
|
||||
{ return aligned_alloc(alignof(SmallElementContext), size); }
|
||||
|
||||
static void operator delete(void *ptr)
|
||||
{ aligned_free(ptr); }
|
||||
|
||||
/*!
|
||||
* \brief Construct all volume and extensive quantities of an element
|
||||
* from scratch.
|
||||
*
|
||||
* \param elem The DUNE Codim<0> entity for which the volume
|
||||
* variables ought to be calculated
|
||||
*/
|
||||
void updateAll(const Element& elem)
|
||||
{
|
||||
throw std::logic_error("Only use update stencil");
|
||||
// asImp_().updateStencil(elem);
|
||||
// asImp_().updateAllIntensiveQuantities();
|
||||
// asImp_().updateAllExtensiveQuantities();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the finite volume geometry for an element.
|
||||
*
|
||||
* \param elem The grid element for which the finite volume geometry ought to be
|
||||
* computed.
|
||||
*/
|
||||
void updateStencil(const Element& elem)
|
||||
{
|
||||
// remember the current element
|
||||
elemPtr_ = &elem;
|
||||
|
||||
// update the stencil. the center gradients are quite expensive to calculate and
|
||||
// most models don't need them, so that we only do this if the model explicitly
|
||||
// enables them
|
||||
stencil_.update(elem);
|
||||
|
||||
// resize the arrays containing the flux and the volume variables
|
||||
//dofVars_.resize(stencil_.numDof());
|
||||
//extensiveQuantities_.resize(stencil_.numInteriorFaces());
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Update the primary topological part of the stencil, but nothing else.
|
||||
*
|
||||
* \param elem The grid element for which the finite volume geometry ought to be
|
||||
* computed.
|
||||
*/
|
||||
void updatePrimaryStencil(const Element& elem)
|
||||
{
|
||||
// remember the current element
|
||||
elemPtr_ = &elem;
|
||||
|
||||
// update the finite element geometry
|
||||
stencil_.updatePrimaryTopology(elem);
|
||||
|
||||
dofVars_.resize(stencil_.numPrimaryDof());
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Update the topological part of the stencil, but nothing else.
|
||||
*
|
||||
* \param elem The grid element for which the finite volume geometry ought to be
|
||||
* computed.
|
||||
*/
|
||||
void updateStencilTopology(const Element& elem)
|
||||
{
|
||||
// remember the current element
|
||||
elemPtr_ = &elem;
|
||||
|
||||
// update the finite element geometry
|
||||
stencil_.updateTopology(elem);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the intensive quantities of all sub-control volumes of the current
|
||||
* element for all time indices.
|
||||
*/
|
||||
void updateAllIntensiveQuantities()
|
||||
{
|
||||
|
||||
// if (!enableStorageCache_) {
|
||||
// // if the storage cache is disabled, we need to calculate the storage term
|
||||
// // from scratch, i.e. we need the intensive quantities of all of the history.
|
||||
// for (unsigned timeIdx = 0; timeIdx < timeDiscHistorySize; ++ timeIdx)
|
||||
// asImp_().updateIntensiveQuantities(timeIdx);
|
||||
// }
|
||||
// else
|
||||
// // if the storage cache is enabled, we only need to recalculate the storage
|
||||
// // term for the most recent point of history (i.e., for the current iterative
|
||||
// // solution)
|
||||
// asImp_().updateIntensiveQuantities(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the intensive quantities of all sub-control volumes of the current
|
||||
* element for a single time index.
|
||||
*
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
void updateIntensiveQuantities(unsigned timeIdx)
|
||||
{ //updateIntensiveQuantities_(timeIdx, numDof(timeIdx));
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the intensive quantities of all sub-control volumes of the current
|
||||
* element for a single time index.
|
||||
*
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
void updatePrimaryIntensiveQuantities(unsigned timeIdx)
|
||||
{
|
||||
updateIntensiveQuantities_(timeIdx, numPrimaryDof(timeIdx));
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the intensive quantities of a single sub-control volume of the
|
||||
* current element for a single time index.
|
||||
*
|
||||
* \param priVars The PrimaryVariables which should be used to calculate the
|
||||
* intensive quantities.
|
||||
* \param dofIdx The local index in the current element of the sub-control volume
|
||||
* which should be updated.
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
void updateIntensiveQuantities(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
|
||||
{ asImp_().updateSingleIntQuants_(priVars, dofIdx, timeIdx); }
|
||||
|
||||
/*!
|
||||
* \brief Compute the extensive quantities of all sub-control volume
|
||||
* faces of the current element for all time indices.
|
||||
*/
|
||||
void updateAllExtensiveQuantities()
|
||||
{ //asImp_().updateExtensiveQuantities(/*timeIdx=*/0);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the extensive quantities of all sub-control volume
|
||||
* faces of the current element for a single time index.
|
||||
*
|
||||
* \param timeIdx The index of the solution vector used by the
|
||||
* time discretization.
|
||||
*/
|
||||
void updateExtensiveQuantities(unsigned timeIdx)
|
||||
{
|
||||
throw std::logic_error("Extensive quantities should not be used");
|
||||
// gradientCalculator_.prepare(/*context=*/asImp_(), timeIdx);
|
||||
|
||||
// for (unsigned fluxIdx = 0; fluxIdx < numInteriorFaces(timeIdx); fluxIdx++) {
|
||||
// extensiveQuantities_[fluxIdx].update(/*context=*/asImp_(),
|
||||
// /*localIndex=*/fluxIdx,
|
||||
// timeIdx);
|
||||
// }
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Sets the degree of freedom on which the simulator is currently "focused" on
|
||||
*
|
||||
* I.e., in the case of automatic differentiation, all derivatives are with regard to
|
||||
* the primary variables of that degree of freedom. Only "primary" DOFs can be
|
||||
* focused on.
|
||||
*/
|
||||
void setFocusDofIndex(unsigned dofIdx)
|
||||
{ focusDofIdx_ = dofIdx; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the degree of freedom on which the simulator is currently "focused" on
|
||||
*
|
||||
* \copydetails setFocusDof()
|
||||
*/
|
||||
unsigned focusDofIndex() const
|
||||
{ return focusDofIdx_; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the linearization type.
|
||||
*
|
||||
* \copydetails setLinearizationType()
|
||||
*/
|
||||
LinearizationType linearizationType() const
|
||||
{ return this->model().linearizer().getLinearizationType(); }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the simulator.
|
||||
*/
|
||||
const Simulator& simulator() const
|
||||
{ return *simulatorPtr_; }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the problem.
|
||||
*/
|
||||
const Problem& problem() const
|
||||
{ return simulatorPtr_->problem(); }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the model.
|
||||
*/
|
||||
const Model& model() const
|
||||
{ return simulatorPtr_->model(); }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the grid view.
|
||||
*/
|
||||
const GridView& gridView() const
|
||||
{ return gridView_; }
|
||||
|
||||
/*!
|
||||
* \brief Return the current element.
|
||||
*/
|
||||
const Element& element() const
|
||||
{ return *elemPtr_; }
|
||||
|
||||
/*!
|
||||
* \brief Return the number of sub-control volumes of the current element.
|
||||
*/
|
||||
size_t numDof(unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).numDof(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the number of primary degrees of freedom of the current element.
|
||||
*/
|
||||
size_t numPrimaryDof(unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).numPrimaryDof(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the number of non-boundary faces which need to be
|
||||
* considered for the flux apporixmation.
|
||||
*/
|
||||
size_t numInteriorFaces(unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).numInteriorFaces(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the number of boundary faces which need to be
|
||||
* considered for the flux apporixmation.
|
||||
*/
|
||||
size_t numBoundaryFaces(unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).numBoundaryFaces(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the current finite element geometry.
|
||||
*
|
||||
* \param timeIdx The index of the solution vector used by the
|
||||
* time discretization.
|
||||
*/
|
||||
const Stencil& stencil(unsigned) const
|
||||
{ return stencil_; }
|
||||
|
||||
/*!
|
||||
* \brief Return the position of a local entities in global coordinates
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom
|
||||
* in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the
|
||||
* time discretization.
|
||||
*/
|
||||
const GlobalPosition& pos(unsigned dofIdx, unsigned) const
|
||||
{ return stencil_.subControlVolume(dofIdx).globalPos(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the global spatial index for a sub-control volume
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom
|
||||
* in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the
|
||||
* time discretization.
|
||||
*/
|
||||
unsigned globalSpaceIndex(unsigned dofIdx, unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).globalSpaceIndex(dofIdx); }
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Return the element-local volume associated with a degree of freedom
|
||||
*
|
||||
* In the case of the vertex-centered finite volume method, this is different from
|
||||
* the total volume because a finite volume usually spans multiple elements...
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
Scalar dofVolume(unsigned dofIdx, unsigned timeIdx) const
|
||||
{ return stencil(timeIdx).subControlVolume(dofIdx).volume(); }
|
||||
|
||||
/*!
|
||||
* \brief Return the total volume associated with a degree of freedom
|
||||
*
|
||||
* "Total" means the volume controlled by a degree of freedom disregarding the
|
||||
* element. (For example in the vertex-centered finite volume method, a control
|
||||
* volume typically encompasses parts of multiple elements.)
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
Scalar dofTotalVolume(unsigned dofIdx, unsigned timeIdx) const
|
||||
{ return model().dofTotalVolume(globalSpaceIndex(dofIdx, timeIdx)); }
|
||||
|
||||
/*!
|
||||
* \brief Returns whether the current element is on the domain's
|
||||
* boundary.
|
||||
*/
|
||||
bool onBoundary() const
|
||||
{ return element().hasBoundaryIntersections(); }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the intensive quantities of a
|
||||
* sub-control volume at a given time.
|
||||
*
|
||||
* If the time step index is not given, return the volume
|
||||
* variables for the current time.
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
const IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx) const
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
assert(dofIdx < numDof(timeIdx));
|
||||
|
||||
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
|
||||
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
|
||||
"for the most-recent substep (i.e. time index 0) are available!");
|
||||
#endif
|
||||
unsigned globalIdx = globalSpaceIndex(dofIdx, timeIdx);
|
||||
|
||||
const auto *cachedIntQuants = model().cachedIntensiveQuantities(globalIdx, timeIdx);
|
||||
if(cachedIntQuants){
|
||||
return *cachedIntQuants;//dofVars_[dofIdx].intensiveQuantities[timeIdx];
|
||||
}else{
|
||||
throw std::logic_error("Cached quantities need to be calcualted before for this element context");
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return the thermodynamic hint for a given local index.
|
||||
*
|
||||
* \sa Discretization::thermodynamicHint(int, int)
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
// const IntensiveQuantities *thermodynamicHint(unsigned dofIdx, unsigned timeIdx) const
|
||||
// {
|
||||
// assert(dofIdx < numDof(timeIdx));
|
||||
// return dofVars_[dofIdx].thermodynamicHint[timeIdx];
|
||||
// }
|
||||
/*!
|
||||
* \copydoc intensiveQuantities()
|
||||
*/
|
||||
// IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx)
|
||||
// {
|
||||
// assert(dofIdx < numDof(timeIdx));
|
||||
// return dofVars_[dofIdx].intensiveQuantities[timeIdx];
|
||||
// }
|
||||
|
||||
/*!
|
||||
* \brief Return the primary variables for a given local index.
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom
|
||||
* in the current element.
|
||||
* \param timeIdx The index of the solution vector used by the
|
||||
* time discretization.
|
||||
*/
|
||||
const PrimaryVariables& primaryVars(unsigned dofIdx, unsigned timeIdx) const
|
||||
{
|
||||
//need for compilation with vtk
|
||||
//throw std::logic_error("Cached quantities need to be calcualted before for this element context");
|
||||
assert(dofIdx < numDof(timeIdx));
|
||||
return *dofVars_[dofIdx].priVars[timeIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns true if no intensive quanties are stashed
|
||||
*
|
||||
* In most cases quantities are stashed only if a partial derivative is to be
|
||||
* calculated via finite difference methods.
|
||||
*/
|
||||
bool haveStashedIntensiveQuantities() const
|
||||
{ return stashedDofIdx_ != -1; }
|
||||
|
||||
/*!
|
||||
* \brief Return the (local) index of the DOF for which the primary variables were
|
||||
* stashed
|
||||
*
|
||||
* If none, then this returns -1.
|
||||
*/
|
||||
int stashedDofIdx() const
|
||||
{ return stashedDofIdx_; }
|
||||
|
||||
/*!
|
||||
* \brief Stash the intensive quantities for a degree of freedom on internal memory.
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
*/
|
||||
// void stashIntensiveQuantities(unsigned dofIdx)
|
||||
// {
|
||||
// assert(dofIdx < numDof(/*timeIdx=*/0));
|
||||
|
||||
// intensiveQuantitiesStashed_ = dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0];
|
||||
// priVarsStashed_ = *dofVars_[dofIdx].priVars[/*timeIdx=*/0];
|
||||
// stashedDofIdx_ = static_cast<int>(dofIdx);
|
||||
// }
|
||||
|
||||
/*!
|
||||
* \brief Restores the intensive quantities for a degree of freedom from internal memory.
|
||||
*
|
||||
* \param dofIdx The local index of the degree of freedom in the current element.
|
||||
*/
|
||||
// void restoreIntensiveQuantities(unsigned dofIdx)
|
||||
// {
|
||||
// dofVars_[dofIdx].priVars[/*timeIdx=*/0] = &priVarsStashed_;
|
||||
// dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0] = intensiveQuantitiesStashed_;
|
||||
// stashedDofIdx_ = -1;
|
||||
// }
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the gradient calculation class of
|
||||
* the chosen spatial discretization.
|
||||
*/
|
||||
const GradientCalculator& gradientCalculator() const
|
||||
{
|
||||
throw std::logic_error("Gradient calculator should not be used");
|
||||
// return gradientCalculator_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return a reference to the extensive quantities of a
|
||||
* sub-control volume face.
|
||||
*
|
||||
* \param fluxIdx The local index of the sub-control volume face for which the
|
||||
* extensive quantities are requested
|
||||
* \param timeIdx The index of the solution vector used by the time discretization.
|
||||
*/
|
||||
const ExtensiveQuantities& extensiveQuantities(unsigned fluxIdx, unsigned) const
|
||||
{
|
||||
throw std::logic_error("Extensive quantiteis shoud not be used");
|
||||
// return extensiveQuantities_[fluxIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns true iff the cache for the storage term ought to be used for this context.
|
||||
*
|
||||
* If it is used, intensive quantities can only be accessed for the most recent time
|
||||
* index. (time index 0.)
|
||||
*/
|
||||
bool enableStorageCache() const
|
||||
{ return enableStorageCache_; }
|
||||
|
||||
/*!
|
||||
* \brief Specifies if the cache for the storage term ought to be used for this context.
|
||||
*/
|
||||
void setEnableStorageCache(bool yesno)
|
||||
{ enableStorageCache_ = yesno; }
|
||||
|
||||
private:
|
||||
Implementation& asImp_()
|
||||
{ return *static_cast<Implementation*>(this); }
|
||||
|
||||
const Implementation& asImp_() const
|
||||
{ return *static_cast<const Implementation*>(this); }
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* \brief Update the first 'n' intensive quantities objects from the primary variables.
|
||||
*
|
||||
* This method considers the intensive quantities cache.
|
||||
*/
|
||||
void updateIntensiveQuantities_(unsigned timeIdx, size_t numDof)
|
||||
{
|
||||
//throw std::invalid_argument("Intenisive quantiteis should not be updated for this element context");
|
||||
// update the intensive quantities for the whole history
|
||||
const SolutionVector& globalSol = model().solution(timeIdx);
|
||||
|
||||
// update the non-gradient quantities
|
||||
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
|
||||
unsigned globalIdx = globalSpaceIndex(dofIdx, timeIdx);
|
||||
const PrimaryVariables& dofSol = globalSol[globalIdx];
|
||||
dofVars_[dofIdx].priVars[timeIdx] = &dofSol;
|
||||
|
||||
dofVars_[dofIdx].thermodynamicHint[timeIdx] =
|
||||
model().thermodynamicHint(globalIdx, timeIdx);
|
||||
|
||||
const auto *cachedIntQuants = model().cachedIntensiveQuantities(globalIdx, timeIdx);
|
||||
if (cachedIntQuants) {
|
||||
dofVars_[dofIdx].intensiveQuantities[timeIdx] = *cachedIntQuants;
|
||||
}
|
||||
else {
|
||||
updateSingleIntQuants_(dofSol, dofIdx, timeIdx);
|
||||
model().updateCachedIntensiveQuantities(dofVars_[dofIdx].intensiveQuantities[timeIdx],
|
||||
globalIdx,
|
||||
timeIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void updateSingleIntQuants_(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
|
||||
{
|
||||
//throw std::invalid_argument("Intenisive quantiteis should not be updated for this element context");
|
||||
#ifndef NDEBUG
|
||||
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
|
||||
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
|
||||
"for the most-recent substep (i.e. time index 0) are available!");
|
||||
#endif
|
||||
|
||||
dofVars_[dofIdx].priVars[timeIdx] = &priVars;
|
||||
dofVars_[dofIdx].intensiveQuantities[timeIdx].update(/*context=*/asImp_(), dofIdx, timeIdx);
|
||||
}
|
||||
|
||||
//IntensiveQuantities intensiveQuantitiesStashed_;
|
||||
//PrimaryVariables priVarsStashed_;
|
||||
|
||||
//GradientCalculator gradientCalculator_;
|
||||
|
||||
std::vector<DofStore_, aligned_allocator<DofStore_, alignof(DofStore_)> > dofVars_;
|
||||
//std::vector<ExtensiveQuantities, aligned_allocator<ExtensiveQuantities, alignof(ExtensiveQuantities)> > extensiveQuantities_;
|
||||
|
||||
const Simulator *simulatorPtr_;
|
||||
const Element *elemPtr_;
|
||||
const GridView gridView_;
|
||||
Stencil stencil_;
|
||||
|
||||
int stashedDofIdx_;
|
||||
int focusDofIdx_;
|
||||
bool enableStorageCache_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user