Merge pull request #3283 from joakim-hove/merge-wellstate

Merge wellstate
This commit is contained in:
Joakim Hove 2021-05-21 17:37:35 +02:00 committed by GitHub
commit 80cdcbb4aa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 1779 additions and 1913 deletions

View File

@ -64,7 +64,6 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/wells/WellInterfaceGeneric.cpp
opm/simulators/wells/WellProdIndexCalculator.cpp
opm/simulators/wells/WellState.cpp
opm/simulators/wells/WellStateFullyImplicitBlackoil.cpp
opm/simulators/wells/WGState.cpp
)
@ -123,7 +122,7 @@ list (APPEND TEST_SOURCE_FILES
tests/test_relpermdiagnostics.cpp
tests/test_norne_pvt.cpp
tests/test_wellprodindexcalculator.cpp
tests/test_wellstatefullyimplicitblackoil.cpp
tests/test_wellstate.cpp
tests/test_parallelwellinfo.cpp
tests/test_glift1.cpp
tests/test_keyword_validator.cpp
@ -202,7 +201,6 @@ list (APPEND PUBLIC_HEADER_FILES
opm/core/props/satfunc/RelpermDiagnostics.hpp
opm/simulators/timestepping/SimulatorReport.hpp
opm/simulators/wells/WellContainer.hpp
opm/simulators/wells/WellState.hpp
opm/simulators/aquifers/AquiferInterface.hpp
opm/simulators/aquifers/AquiferCarterTracy.hpp
opm/simulators/aquifers/AquiferFetkovich.hpp
@ -275,7 +273,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/utils/readDeck.hpp
opm/simulators/wells/TargetCalculator.hpp
opm/simulators/wells/WellConnectionAuxiliaryModule.hpp
opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp
opm/simulators/wells/WellState.hpp
opm/simulators/wells/GlobalWellInfo.hpp
opm/simulators/wells/GroupState.hpp
opm/simulators/wells/ALQState.hpp

View File

@ -33,7 +33,7 @@
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/alignedallocator.hh>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/densead/Evaluation.hpp>
@ -1413,12 +1413,12 @@ protected:
/ rhoWaterSurface;
}
const WellStateFullyImplicitBlackoil& wellState() const
const WellState& wellState() const
{
throw std::logic_error("wellState() method not implemented for class eclpeacemanwell");
}
WellStateFullyImplicitBlackoil& wellState()
WellState& wellState()
{
throw std::logic_error("wellState() method not implemented for class eclpeacemanwell");
}

View File

@ -36,7 +36,7 @@
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellConnections.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
@ -622,12 +622,12 @@ public:
throw std::logic_error("initFromRestartFile() method not implemented for class eclwellmanager");
}
const WellStateFullyImplicitBlackoil& wellState() const
const WellState& wellState() const
{
throw std::logic_error("wellState() method not implemented for class eclwellmanager");
}
WellStateFullyImplicitBlackoil& wellState()
WellState& wellState()
{
throw std::logic_error("wellState() method not implemented for class eclwellmanager");
}

View File

@ -149,7 +149,6 @@ namespace Opm {
{
public:
// --------- Types and enums ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;

View File

@ -80,6 +80,7 @@ struct NewtonRelaxationType<TypeTag, TTag::FlowNonLinearSolver> {
namespace Opm {
class WellState;
/// A nonlinear solver class suitable for general fully-implicit models,
/// as well as pressure, transport and sequential models.
@ -147,7 +148,7 @@ namespace Opm {
};
// Forwarding types from PhysicalModel.
typedef typename PhysicalModel::WellState WellState;
//typedef typename PhysicalModel::WellState WellState;
// --------- Public methods ---------

View File

@ -25,7 +25,7 @@
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
@ -80,7 +80,6 @@ public:
typedef AdaptiveTimeSteppingEbos<TypeTag> TimeStepper;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelEbos<TypeTag> Model;
typedef NonlinearSolverEbos<TypeTag, Model> Solver;
typedef typename Model::ModelParameters ModelParameters;

View File

@ -58,7 +58,7 @@
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
@ -93,7 +93,6 @@ namespace Opm {
{
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Grid = GetPropType<TypeTag, Properties::Grid>;
@ -231,7 +230,7 @@ namespace Opm {
/*
The dynamic state of the well model is maintained with an instance
of the WellStateFullyImplicitBlackoil class. Currently we have
of the WellState class. Currently we have
three different wellstate instances:
1. The currently active wellstate is in the active_well_state_
@ -253,7 +252,7 @@ namespace Opm {
/*
Immutable version of the currently active wellstate.
*/
const WellStateFullyImplicitBlackoil& wellState() const
const WellState& wellState() const
{
return this->active_wgstate_.well_state;
}
@ -261,7 +260,7 @@ namespace Opm {
/*
Mutable version of the currently active wellstate.
*/
WellStateFullyImplicitBlackoil& wellState()
WellState& wellState()
{
return this->active_wgstate_.well_state;
}
@ -273,7 +272,7 @@ namespace Opm {
prevWellState() must have been stored with the commitWellState()
function first.
*/
const WellStateFullyImplicitBlackoil& prevWellState() const
const WellState& prevWellState() const
{
return this->last_valid_wgstate_.well_state;
}
@ -286,7 +285,7 @@ namespace Opm {
Will return the currently active nupcolWellState; must initialize
the internal nupcol wellstate with initNupcolWellState() first.
*/
const WellStateFullyImplicitBlackoil& nupcolWellState() const
const WellState& nupcolWellState() const
{
return this->nupcol_wgstate_.well_state;
}
@ -590,7 +589,7 @@ namespace Opm {
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellStateFullyImplicitBlackoil& state );
WellState& state );
// whether there exists any multisegment well open on this process
bool anyMSWellOpenLocal() const;
@ -611,7 +610,7 @@ namespace Opm {
void actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& topUpPhase, DeferredLogger& deferred_logger);
void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState);
void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellState& wellState);
void setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent);

View File

@ -812,13 +812,13 @@ namespace Opm {
// TODO: more checking here, to make sure this standard more specific and complete
// maybe there is some WCON keywords will not open the well
auto& events = this->wellState().events(w);
if (events.hasEvent(WellStateFullyImplicitBlackoil::event_mask)) {
if (events.hasEvent(WellState::event_mask)) {
if (wellTestState_.lastTestTime(well_name) == ebosSimulator_.time()) {
// The well was shut this timestep, we are most likely retrying
// a timestep without the well in question, after it caused
// repeated timestep cuts. It should therefore not be opened,
// even if it was new or received new targets this report step.
events.clearEvent(WellStateFullyImplicitBlackoil::event_mask);
events.clearEvent(WellState::event_mask);
} else {
wellTestState_.openWell(well_name);
}
@ -1700,11 +1700,11 @@ namespace Opm {
if (!well->isOperable() ) continue;
auto& events = this->wellState().events(well->indexOfWell());
if (events.hasEvent(WellStateFullyImplicitBlackoil::event_mask)) {
if (events.hasEvent(WellState::event_mask)) {
well->updateWellStateWithTarget(ebosSimulator_, this->wellState(), deferred_logger);
// There is no new well control change input within a report step,
// so next time step, the well does not consider to have effective events anymore.
events.clearEvent(WellStateFullyImplicitBlackoil::event_mask);
events.clearEvent(WellState::event_mask);
}
// solve the well equation initially to improve the initial solution of the well model
@ -1951,7 +1951,7 @@ namespace Opm {
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellStateFullyImplicitBlackoil& well_state)
WellState& well_state)
{
using GPMode = Group::ProductionCMode;
using GIMode = Group::InjectionCMode;
@ -2948,7 +2948,7 @@ namespace Opm {
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState) {
updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellState& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateWsolvent(groupTmp, schedule, reportStepIdx, wellState);

View File

@ -26,7 +26,6 @@ namespace Opm {
template<typename TypeTag> class StandardWell;
}
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/GasLiftSingleWellGeneric.hpp>
#include <optional>
@ -40,7 +39,6 @@ namespace Opm
class GasLiftSingleWell : public GasLiftSingleWellGeneric
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using WellState = WellStateFullyImplicitBlackoil;
using StdWell = StandardWell<TypeTag>;
public:

View File

@ -25,7 +25,7 @@
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <fmt/format.h>

View File

@ -39,7 +39,7 @@ class DeferredLogger;
class GasLiftWellState;
class Schedule;
class SummaryState;
class WellStateFullyImplicitBlackoil;
class WellState;
class GasLiftSingleWellGeneric
{
@ -49,8 +49,6 @@ class GasLiftSingleWellGeneric
static constexpr double ALQ_EPSILON = 1e-8;
public:
using WellState = WellStateFullyImplicitBlackoil;
struct GradInfo
{
GradInfo() { }

View File

@ -18,6 +18,16 @@
*/
namespace Opm {
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <optional>
#include <string>
template<typename TypeTag>
GasLiftSingleWell<TypeTag>::

View File

@ -33,7 +33,7 @@
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
// NOTE: BlackoilWellModel.hpp includes ourself (GasLiftStage2.hpp), so we need
// to forward declare BlackoilWellModel for it to be defined in this file.
namespace Opm {
@ -58,7 +58,6 @@ namespace Opm
template<class TypeTag>
class GasLiftStage2 {
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using WellState = WellStateFullyImplicitBlackoil;
using BlackoilWellModel = ::Opm::BlackoilWellModel<TypeTag>;
using GasLiftSingleWell = ::Opm::GasLiftSingleWell<TypeTag>;
using GLiftWellState = GasLiftWellState;

View File

@ -22,7 +22,7 @@
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <cmath>

View File

@ -36,7 +36,6 @@ namespace Opm
public:
typedef WellInterface<TypeTag> Base;
using typename Base::WellState;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;

View File

@ -67,7 +67,6 @@ namespace Opm
// dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value.
// And also, it can also be beneficial to make these functions hanle different types of AD variables.
using typename Base::Simulator;
using typename Base::WellState;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::MaterialLaw;

View File

@ -20,7 +20,7 @@
#ifndef OPM_WGSTATE_HEADER_INCLUDED
#define OPM_WGSTATE_HEADER_INCLUDED
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/GroupState.hpp>
namespace Opm {
@ -34,7 +34,7 @@ struct PhaseUsage;
struct WGState {
WGState(const PhaseUsage& pu);
WellStateFullyImplicitBlackoil well_state;
WellState well_state;
GroupState group_state;
};

View File

@ -36,7 +36,7 @@ namespace Opm {
can also be accessed and updated with the name.
The class is created to facilitate safe and piecewise refactoring of the
WellStateFullyImplicitBlackOil class, and might have a short life in the
WellState class, and might have a short life in the
development timeline.
*/

View File

@ -30,7 +30,7 @@
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WellContainer.hpp>
#include <algorithm>
@ -72,7 +72,7 @@ namespace WellGroupHelpers
const Schedule& schedule,
const SummaryState& summaryState,
const int reportStepIdx,
WellStateFullyImplicitBlackoil& wellState,
WellState& wellState,
GroupState& group_state)
{
@ -129,7 +129,7 @@ namespace WellGroupHelpers
double sumWellPhaseRates(const WellContainer<std::vector<double>>& rates,
const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
@ -175,7 +175,7 @@ namespace WellGroupHelpers
double sumWellRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
@ -185,7 +185,7 @@ namespace WellGroupHelpers
double sumWellResRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
@ -196,7 +196,7 @@ namespace WellGroupHelpers
double sumSolventRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const bool injector)
{
@ -242,7 +242,7 @@ namespace WellGroupHelpers
const SummaryState& summaryState,
const Opm::PhaseUsage& pu,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
GuideRate* guideRate,
Opm::DeferredLogger& deferred_logger)
@ -300,8 +300,8 @@ namespace WellGroupHelpers
const bool isInjector,
const PhaseUsage& pu,
const GuideRate& guide_rate,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state,
std::vector<double>& groupTargetReduction)
{
@ -420,8 +420,8 @@ namespace WellGroupHelpers
void updateVREPForGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
@ -445,8 +445,8 @@ namespace WellGroupHelpers
void updateReservoirRatesInjectionGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
@ -470,8 +470,8 @@ namespace WellGroupHelpers
void updateWellRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState)
const WellState& wellStateNupcol,
WellState& wellState)
{
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
@ -501,8 +501,8 @@ namespace WellGroupHelpers
void updateGroupProductionRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state)
{
for (const std::string& groupName : group.groups()) {
@ -524,8 +524,8 @@ namespace WellGroupHelpers
const int reportStepIdx,
const PhaseUsage& pu,
const SummaryState& st,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state)
{
const int np = wellState.numPhases();
@ -557,7 +557,7 @@ namespace WellGroupHelpers
std::map<std::string, double>
computeNetworkPressures(const Opm::Network::ExtNetwork& network,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const VFPProdProperties& vfp_prod_props,
const Schedule& schedule,
@ -677,7 +677,7 @@ namespace WellGroupHelpers
GuideRate::RateVector
getWellRateVector(const WellStateFullyImplicitBlackoil& well_state, const PhaseUsage& pu, const std::string& name)
getWellRateVector(const WellState& well_state, const PhaseUsage& pu, const std::string& name)
{
return getGuideRateVector(well_state.currentWellRates(name), pu);
}
@ -690,7 +690,7 @@ namespace WellGroupHelpers
double getGuideRate(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -738,7 +738,7 @@ namespace WellGroupHelpers
double getGuideRateInj(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -788,7 +788,7 @@ namespace WellGroupHelpers
int groupControlledWells(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const std::string& group_name,
@ -829,7 +829,7 @@ namespace WellGroupHelpers
}
FractionCalculator::FractionCalculator(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const GuideRate* guide_rate,
@ -975,7 +975,7 @@ namespace WellGroupHelpers
std::pair<bool, double> checkGroupConstraintsProd(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -1099,7 +1099,7 @@ namespace WellGroupHelpers
std::pair<bool, double> checkGroupConstraintsInj(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -1226,7 +1226,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
WellStateFullyImplicitBlackoil& wellState,
WellState& wellState,
const GroupState& group_state,
const Comm& comm,
GuideRate* guideRate,
@ -1309,7 +1309,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const Comm& comm,
GuideRate* guideRate)
{
@ -1349,7 +1349,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu, \
const int reportStepIdx, \
const double& simTime, \
WellStateFullyImplicitBlackoil& wellState, \
WellState& wellState, \
const GroupState& group_state, \
const Dune::CollectiveCommunication<__VA_ARGS__>& comm, \
GuideRate* guideRate, \
@ -1359,7 +1359,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu, \
const int reportStepIdx, \
const double& simTime, \
const WellStateFullyImplicitBlackoil& wellState, \
const WellState& wellState, \
const Dune::CollectiveCommunication<__VA_ARGS__>& comm, \
GuideRate* guideRate);

View File

@ -37,7 +37,7 @@ namespace Network { class ExtNetwork; }
struct PhaseUsage;
class Schedule;
class VFPProdProperties;
class WellStateFullyImplicitBlackoil;
class WellState;
template <typename>
class WellContainer;
@ -53,7 +53,7 @@ namespace WellGroupHelpers
const Schedule& schedule,
const SummaryState& summaryState,
const int reportStepIdx,
WellStateFullyImplicitBlackoil& wellState,
WellState& wellState,
GroupState& group_state);
void accumulateGroupEfficiencyFactor(const Group& group,
@ -64,28 +64,28 @@ namespace WellGroupHelpers
double sumWellPhaseRates(const WellContainer<std::vector<double>>& rates,
const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector);
double sumWellRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector);
double sumWellResRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector);
double sumSolventRates(const Group& group,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const int reportStepIdx,
const bool injector);
@ -95,8 +95,8 @@ namespace WellGroupHelpers
const bool isInjector,
const PhaseUsage& pu,
const GuideRate& guide_rate,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state,
std::vector<double>& groupTargetReduction);
@ -106,7 +106,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
WellStateFullyImplicitBlackoil& wellState,
WellState& wellState,
const GroupState& group_state,
const Comm& comm,
GuideRate* guideRate,
@ -117,7 +117,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu,
const int reportStepIdx,
const double& simTime,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const Comm& comm,
GuideRate* guideRate);
@ -126,7 +126,7 @@ namespace WellGroupHelpers
const SummaryState& summaryState,
const Opm::PhaseUsage& pu,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
GuideRate* guideRate,
Opm::DeferredLogger& deferred_logger);
@ -134,28 +134,28 @@ namespace WellGroupHelpers
void updateVREPForGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state);
void updateReservoirRatesInjectionGroups(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state);
void updateWellRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState);
const WellState& wellStateNupcol,
WellState& wellState);
void updateGroupProductionRates(const Group& group,
const Schedule& schedule,
const int reportStepIdx,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state);
void updateREINForGroups(const Group& group,
@ -163,27 +163,27 @@ namespace WellGroupHelpers
const int reportStepIdx,
const PhaseUsage& pu,
const SummaryState& st,
const WellStateFullyImplicitBlackoil& wellStateNupcol,
WellStateFullyImplicitBlackoil& wellState,
const WellState& wellStateNupcol,
WellState& wellState,
GroupState& group_state);
std::map<std::string, double>
computeNetworkPressures(const Opm::Network::ExtNetwork& network,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const VFPProdProperties& vfp_prod_props,
const Schedule& schedule,
const int report_time_step);
GuideRate::RateVector
getWellRateVector(const WellStateFullyImplicitBlackoil& well_state, const PhaseUsage& pu, const std::string& name);
getWellRateVector(const WellState& well_state, const PhaseUsage& pu, const std::string& name);
GuideRate::RateVector
getProductionGroupRateVector(const GroupState& group_state, const PhaseUsage& pu, const std::string& group_name);
double getGuideRate(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -193,7 +193,7 @@ namespace WellGroupHelpers
double getGuideRateInj(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -202,7 +202,7 @@ namespace WellGroupHelpers
const PhaseUsage& pu);
int groupControlledWells(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const std::string& group_name,
@ -215,7 +215,7 @@ namespace WellGroupHelpers
{
public:
FractionCalculator(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const WellState& well_state,
const GroupState& group_state,
const int report_step,
const GuideRate* guide_rate,
@ -233,7 +233,7 @@ namespace WellGroupHelpers
int groupControlledWells(const std::string& group_name, const std::string& always_included_child);
GuideRate::RateVector getGroupRateVector(const std::string& group_name);
const Schedule& schedule_;
const WellStateFullyImplicitBlackoil& well_state_;
const WellState& well_state_;
const GroupState& group_state_;
int report_step_;
const GuideRate* guide_rate_;
@ -247,7 +247,7 @@ namespace WellGroupHelpers
std::pair<bool, double> checkGroupConstraintsInj(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,
@ -276,7 +276,7 @@ namespace WellGroupHelpers
std::pair<bool, double> checkGroupConstraintsProd(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const WellState& wellState,
const GroupState& group_state,
const int reportStepIdx,
const GuideRate* guideRate,

View File

@ -39,7 +39,7 @@
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
// NOTE: GasLiftSingleWell.hpp includes StandardWell.hpp which includes ourself
// (WellInterface.hpp), so we need to forward declare GasLiftSingleWell
// for it to be defined in this file. Similar for BlackoilWellModel
@ -76,8 +76,6 @@ namespace Opm
{
public:
using WellState = WellStateFullyImplicitBlackoil;
using ModelParameters = BlackoilModelParametersEbos<TypeTag>;
static const int Water = BlackoilPhases::Aqua;

View File

@ -28,7 +28,7 @@
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cassert>
#include <cmath>

View File

@ -42,11 +42,10 @@ struct PhaseUsage;
class SummaryState;
class VFPProperties;
class WellTestState;
class WellStateFullyImplicitBlackoil;
class WellState;
class WellInterfaceGeneric {
public:
using WellState = WellStateFullyImplicitBlackoil;
WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& parallel_well_info,

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,6 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
@ -17,57 +18,365 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATE_HEADER_INCLUDED
#define OPM_WELLSTATE_HEADER_INCLUDED
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/ALQState.hpp>
#include <opm/simulators/wells/GlobalWellInfo.hpp>
#include <opm/simulators/wells/WellContainer.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <array>
#include <cstddef>
#include <functional>
#include <map>
#include <optional>
#include <string>
#include <utility>
#include <vector>
namespace Opm
{
class ParallelWellInfo;
class SummaryState;
class Schedule;
/// The state of a set of wells.
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellState
{
public:
using mapentry_t = std::array<int, 3>;
using WellMapType = std::map<std::string, mapentry_t>;
explicit WellState(const PhaseUsage& pu) :
phase_usage_(pu)
{}
WellState() = default;
WellState(const WellState& rhs) = default;
static const uint64_t event_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE;
virtual ~WellState() = default;
WellState& operator=(const WellState& rhs) = default;
// TODO: same definition with WellInterface, eventually they should go to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
/// Allocate and initialize if wells is non-null.
/// Also tries to give useful initial values to the bhp() and
/// wellRates() fields, depending on controls. The
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
explicit WellState(const PhaseUsage& pu)
{
this->phase_usage_ = pu;
}
const WellMapType& wellMap() const { return wellMap_; }
WellMapType& wellMap() { return wellMap_; }
int numWells() const
{
return wellMap_.size();
}
const ParallelWellInfo& parallelWellInfo(std::size_t well_index) const;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
void init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const int report_step,
const WellState* prevState,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state);
void resize(const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state);
/// One rate per phase and well connection.
std::vector<double>& mutable_perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per injecting well.
Well::InjectorCMode currentInjectionControl(std::size_t well_index) const { return current_injection_controls_[well_index]; }
void currentInjectionControl(std::size_t well_index, Well::InjectorCMode cmode) { current_injection_controls_[well_index] = cmode; }
/// One current control per producing well.
Well::ProducerCMode currentProductionControl(std::size_t well_index) const { return current_production_controls_[well_index]; }
void currentProductionControl(std::size_t well_index, Well::ProducerCMode cmode) { current_production_controls_[well_index] = cmode; }
void setCurrentWellRates(const std::string& wellName, const std::vector<double>& rates ) {
well_rates[wellName].second = rates;
}
const std::vector<double>& currentWellRates(const std::string& wellName) const;
bool hasWellRates(const std::string& wellName) const {
return this->well_rates.find(wellName) != this->well_rates.end();
}
template<class Communication>
void gatherVectorsOnRoot(const std::vector< data::Connection >& from_connections,
std::vector< data::Connection >& to_connections,
const Communication& comm) const;
data::Wells
report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const;
void reportConnections(data::Well& well, const PhaseUsage &pu,
const WellMapType::value_type& wt,
const int* globalCellIdxMap) const;
/// init the MS well related.
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
const WellState* prev_well_state);
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates);
Events& events(std::size_t well_index) {
return this->events_[well_index];
}
const std::vector<int>& firstPerfIndex() const
{
return first_perf_index_;
}
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const;
/// One rate pr well connection.
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
/// One rate pr well
double polymerWellRate(const int w) const;
/// One rate pr well connection.
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
/// One rate pr well
double brineWellRate(const int w) const;
const WellContainer<std::vector<double>>& wellReservoirRates() const { return well_reservoir_rates_; }
std::vector<double>& wellReservoirRates(std::size_t well_index)
{
return well_reservoir_rates_[well_index];
}
const std::vector<double>& wellReservoirRates(std::size_t well_index) const
{
return well_reservoir_rates_[well_index];
}
std::vector<double>& wellDissolvedGasRates()
{
return well_dissolved_gas_rates_;
}
std::vector<double>& wellVaporizedOilRates()
{
return well_vaporized_oil_rates_;
}
const std::vector<double>& segRates() const
{
return seg_rates_;
}
std::vector<double>& segRates()
{
return seg_rates_;
}
const std::vector<double>& segPress() const
{
return seg_press_;
}
std::vector<double>& segPressDrop()
{
return seg_pressdrop_;
}
const std::vector<double>& segPressDrop() const
{
return seg_pressdrop_;
}
std::vector<double>& segPressDropFriction()
{
return seg_pressdrop_friction_;
}
const std::vector<double>& segPressDropFriction() const
{
return seg_pressdrop_friction_;
}
std::vector<double>& segPressDropHydroStatic()
{
return seg_pressdrop_hydorstatic_;
}
const std::vector<double>& segPressDropHydroStatic() const
{
return seg_pressdrop_hydorstatic_;
}
std::vector<double>& segPressDropAcceleration()
{
return seg_pressdrop_acceleration_;
}
const std::vector<double>& segPressDropAcceleration() const
{
return seg_pressdrop_acceleration_;
}
std::vector<double>& segPress()
{
return seg_press_;
}
int numSegment() const
{
return nseg_;
}
int topSegmentIndex(const int w) const;
std::vector<double>& productivityIndex() {
return productivity_index_;
}
const std::vector<double>& productivityIndex() const {
return productivity_index_;
}
std::vector<double>& connectionProductivityIndex() {
return this->conn_productivity_index_;
}
const std::vector<double>& connectionProductivityIndex() const {
return this->conn_productivity_index_;
}
std::vector<double>& wellPotentials() {
return well_potentials_;
}
const std::vector<double>& wellPotentials() const {
return well_potentials_;
}
std::vector<double>& perfThroughput() {
return perf_water_throughput_;
}
const std::vector<double>& perfThroughput() const {
return perf_water_throughput_;
}
std::vector<double>& perfSkinPressure() {
return perf_skin_pressure_;
}
const std::vector<double>& perfSkinPressure() const {
return perf_skin_pressure_;
}
std::vector<double>& perfWaterVelocity() {
return perf_water_velocity_;
}
const std::vector<double>& perfWaterVelocity() const {
return perf_water_velocity_;
}
template<class Comm>
void communicateGroupRates(const Comm& comm);
template<class Comm>
void updateGlobalIsGrup(const Comm& comm);
bool isInjectionGrup(const std::string& name) const {
return this->global_well_info.value().in_injecting_group(name);
}
bool isProductionGrup(const std::string& name) const {
return this->global_well_info.value().in_producing_group(name);
}
double getALQ( const std::string& name) const
{
return this->alq_state.get(name);
}
void setALQ( const std::string& name, double value)
{
this->alq_state.set(name, value);
}
bool gliftCheckAlqOscillation(const std::string &name) const {
return this->alq_state.oscillation(name);
}
int gliftGetAlqDecreaseCount(const std::string &name) {
return this->alq_state.get_decrement_count(name);
}
int gliftGetAlqIncreaseCount(const std::string &name) {
return this->alq_state.get_increment_count(name);
}
void gliftUpdateAlqIncreaseCount(const std::string &name, bool increase) {
this->alq_state.update_count(name, increase);
}
bool gliftOptimizationEnabled() const {
return do_glift_optimization_;
}
void gliftTimeStepInit() {
this->alq_state.reset_count();
disableGliftOptimization();
}
void disableGliftOptimization() {
do_glift_optimization_ = false;
}
void enableGliftOptimization() {
do_glift_optimization_ = true;
}
int wellNameToGlobalIdx(const std::string &name) {
return this->global_well_info.value().well_index(name);
}
std::string globalIdxToWellName(const int index) {
return this->global_well_info.value().well_name(index);
}
bool wellIsOwned(std::size_t well_index,
const std::string& wellName) const;
bool wellIsOwned(const std::string& wellName) const;
/// Special purpose method to support dynamically rescaling a well's
/// CTFs through WELPI.
///
@ -80,6 +389,25 @@ public:
void resetConnectionTransFactors(const int well_index,
const std::vector<PerforationData>& well_perf_data);
void updateStatus(int well_index, Well::Status status);
void openWell(int well_index) {
this->status_[well_index] = Well::Status::OPEN;
}
void shutWell(int well_index);
void stopWell(int well_index);
/// The number of phases present.
int numPhases() const
{
return this->phase_usage_.num_phases;
}
const PhaseUsage& phaseUsage() const {
return this->phase_usage_;
}
/// One bhp pressure per well.
void update_bhp(std::size_t well_index, double value) { bhp_[well_index] = value; }
double bhp(std::size_t well_index) const { return bhp_[well_index]; }
@ -109,70 +437,146 @@ public:
std::vector<double>& perfPress(const std::string& wname) { return perfpress_[wname]; }
const std::vector<double>& perfPress(const std::string& wname) const { return perfpress_[wname]; }
const WellMapType& wellMap() const { return wellMap_; }
WellMapType& wellMap() { return wellMap_; }
const ParallelWellInfo& parallelWellInfo(std::size_t well_index) const;
bool wellIsOwned(std::size_t well_index,
const std::string& wellName) const;
bool wellIsOwned(const std::string& wellName) const;
/// The number of wells present.
int numWells() const
{
return wellMap_.size();
}
/// The number of phases present.
int numPhases() const
{
return this->phase_usage_.num_phases;
}
const PhaseUsage& phaseUsage() const {
return this->phase_usage_;
}
void openWell(int well_index) {
this->status_[well_index] = Well::Status::OPEN;
}
virtual void shutWell(int well_index);
virtual void stopWell(int well_index);
void updateStatus(int well_index, Well::Status status);
virtual data::Wells
report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const;
virtual void reportConnections(data::Well& well, const PhaseUsage&,
const WellMapType::value_type& itr,
const int* globalCellIdxMap) const;
protected:
private:
WellContainer<Well::Status> status_;
WellContainer<std::vector<PerforationData>> well_perf_data_;
WellContainer<const ParallelWellInfo*> parallel_well_info_;
private:
PhaseUsage phase_usage_;
WellMapType wellMap_;
std::vector<double> bhp_;
std::vector<double> thp_;
std::vector<double> temperature_;
WellContainer<std::vector<double>> wellrates_;
PhaseUsage phase_usage_;
WellContainer<std::vector<double>> perfrates_;
WellContainer<std::vector<double>> perfpress_;
WellMapType wellMap_;
std::vector<double> perfphaserates_;
WellContainer<int> is_producer_; // Size equal to number of local wells.
template<class Communication>
void gatherVectorsOnRoot(const std::vector< data::Connection >& from_connections,
std::vector< data::Connection >& to_connections,
const Communication& comm) const;
// vector with size number of wells +1.
// iterate over all perforations of a given well
// for (int perf = first_perf_index_[well_index]; perf < first_perf_index_[well_index] + num_perf_[well_index]; ++perf)
std::vector<int> first_perf_index_;
std::vector<int> num_perf_;
WellContainer<Opm::Well::InjectorCMode> current_injection_controls_;
WellContainer<Well::ProducerCMode> current_production_controls_;
// Use of std::optional<> here is a technical crutch, the
// WellStateFullyImplicitBlackoil class should be default constructible,
// whereas the GlobalWellInfo is not.
std::optional<GlobalWellInfo> global_well_info;
std::map<std::string, std::pair<bool, std::vector<double>>> well_rates;
ALQState alq_state;
bool do_glift_optimization_;
std::vector<double> perfRateSolvent_;
// only for output
std::vector<double> perfRatePolymer_;
std::vector<double> perfRateBrine_;
// it is the throughput of water flow through the perforations
// it is used as a measure of formation damage around well-bore due to particle deposition
// it will only be used for injectors to check the injectivity
std::vector<double> perf_water_throughput_;
// skin pressure of peforation
// it will only be used for injectors to check the injectivity
std::vector<double> perf_skin_pressure_;
// it will only be used for injectors to check the injectivity
// water velocity of perforation
std::vector<double> perf_water_velocity_;
// phase rates under reservoir condition for wells
// or voidage phase rates
WellContainer<std::vector<double>> well_reservoir_rates_;
// dissolved gas rates or solution gas production rates
// should be zero for injection wells
std::vector<double> well_dissolved_gas_rates_;
// vaporized oil rates or solution oil producation rates
// should be zero for injection wells
std::vector<double> well_vaporized_oil_rates_;
// some events happens to the well, like this well is a new well
// or new well control keywords happens
// \Note: for now, only WCON* keywords, and well status change is considered
WellContainer<Events> events_;
// MS well related
// for StandardWell, the number of segments will be one
std::vector<double> seg_rates_;
std::vector<double> seg_press_;
// the index of the top segments, which is used to locate the
// multisegment well related information in WellState
std::vector<int> top_segment_index_;
int nseg_; // total number of the segments
// The following data are only recorded for output
// pressure drop
std::vector<double> seg_pressdrop_;
// frictional pressure drop
std::vector<double> seg_pressdrop_friction_;
// hydrostatic pressure drop
std::vector<double> seg_pressdrop_hydorstatic_;
// accelerational pressure drop
std::vector<double> seg_pressdrop_acceleration_;
// Productivity Index
std::vector<double> productivity_index_;
// Connection-level Productivity Index
std::vector<double> conn_productivity_index_;
// Well potentials
std::vector<double> well_potentials_;
/// Map segment index to segment number, mostly for MS wells.
///
/// Segment number (one-based) of j-th segment in i-th well is
/// \code
/// const auto top = topSegmentIndex(i);
/// const auto seg_No = seg_number_[top + j];
/// \end
std::vector<int> seg_number_;
data::Segment
reportSegmentResults(const PhaseUsage& pu,
const int well_id,
const int seg_ix,
const int seg_no) const;
int numSegments(const int well_id) const;
int segmentNumber(const int well_id, const int seg_id) const;
// If the ALQ has changed since the previous report step,
// reset current_alq and update default_alq. ALQ is used for
// constant lift gas injection and for gas lift optimization
// (THP controlled wells).
//
// NOTE: If a well is no longer used (e.g. it is shut down)
// it is still kept in the maps "default_alq_" and "current_alq_". Since the
// number of unused entries should be small (negligible memory
// overhead) this is simpler than writing code to delete it.
//
void updateWellsDefaultALQ(const std::vector<Well>& wells_ecl);
/// Allocate and initialize if wells is non-null.
/// Also tries to give useful initial values to the bhp() and
/// wellRates() fields, depending on controls. The
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
void base_init(const std::vector<double>& cellPressures,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state);
void initSingleWell(const std::vector<double>& cellPressures,
const int w,
@ -180,8 +584,12 @@ private:
const std::vector<PerforationData>& well_perf_data,
const ParallelWellInfo* well_info,
const SummaryState& summary_state);
};
} // namespace Opm
#endif // OPM_WELLSTATE_HEADER_INCLUDED
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED

View File

@ -1,929 +0,0 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <algorithm>
#include <cassert>
#include <numeric>
namespace Opm
{
void WellStateFullyImplicitBlackoil::init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const int report_step,
const WellStateFullyImplicitBlackoil* prevState,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// call init on base class
BaseType :: init(cellPressures, wells_ecl, parallel_well_info, well_perf_data, summary_state);
this->global_well_info = std::make_optional<GlobalWellInfo>( schedule, report_step, wells_ecl );
for (const auto& winfo: parallel_well_info)
{
well_rates.insert({winfo->name(), std::make_pair(winfo->isOwner(), std::vector<double>())});
}
const int nw = wells_ecl.size();
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
int nperf = 0;
for (const auto& wpd : well_perf_data) {
nperf += wpd.size();
}
well_reservoir_rates_.clear();
well_dissolved_gas_rates_.resize(nw, 0.0);
well_vaporized_oil_rates_.resize(nw, 0.0);
this->events_.clear();
{
const auto& wg_events = schedule[report_step].wellgroup_events();
for (const auto& ecl_well : wells_ecl) {
const auto& wname = ecl_well.name();
if (wg_events.has(wname))
this->events_.add( wname, wg_events.at(wname) );
else
this->events_.add( wname, Events() );
}
}
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * this->numPhases(), 0.0);
// these are only used to monitor the injectivity
perf_water_throughput_.clear();
perf_water_throughput_.resize(nperf, 0.0);
perf_water_velocity_.clear();
perf_water_velocity_.resize(nperf, 0.0);
perf_skin_pressure_.clear();
perf_skin_pressure_.resize(nperf, 0.0);
num_perf_.resize(nw, 0);
first_perf_index_.resize(nw, 0);
first_perf_index_[0] = 0;
for (int w = 0; w < nw; ++w) {
// Initialize perfphaserates_ to well
// rates divided by the number of perforations.
const auto& wname = wells_ecl[w].name();
const auto& well_info = this->wellMap().at(wname);
const int connpos = well_info[1];
const int num_perf_this_well = well_info[2];
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
auto& perf_press = this->perfPress(w);
auto * phase_rates = &this->mutable_perfPhaseRates()[connpos * this->numPhases()];
for (int perf = 0; perf < num_perf_this_well; ++perf) {
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
for (int p = 0; p < this->numPhases(); ++p) {
phase_rates[this->numPhases()*perf + p] = wellRates(w)[p] / double(global_num_perf_this_well);
}
}
perf_press[perf] = cellPressures[well_perf_data[w][perf].cell_index];
}
num_perf_[w] = num_perf_this_well;
first_perf_index_[w] = connpos;
this->well_reservoir_rates_.add(wname, std::vector<double>(np, 0));
}
is_producer_.clear();
for (int w = 0; w < nw; ++w) {
const auto& ecl_well = wells_ecl[w];
this->is_producer_.add( ecl_well.name(), ecl_well.isProducer());
}
current_injection_controls_.clear();
current_production_controls_.clear();
for (int w = 0; w < nw; ++w) {
const auto& wname = wells_ecl[w].name();
current_production_controls_.add(wname, Well::ProducerCMode::CMODE_UNDEFINED);
current_injection_controls_.add(wname, Well::InjectorCMode::CMODE_UNDEFINED);
if (wells_ecl[w].isProducer()) {
const auto controls = wells_ecl[w].productionControls(summary_state);
currentProductionControl(w, controls.cmode);
}
else {
const auto controls = wells_ecl[w].injectionControls(summary_state);
currentInjectionControl(w, controls.cmode);
}
}
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
productivity_index_.resize(nw * this->numPhases(), 0.0);
conn_productivity_index_.resize(nperf * this->numPhases(), 0.0);
well_potentials_.resize(nw * this->numPhases(), 0.0);
perfRatePolymer_.clear();
perfRatePolymer_.resize(nperf, 0.0);
perfRateBrine_.clear();
perfRateBrine_.resize(nperf, 0.0);
for (int w = 0; w < nw; ++w) {
switch (wells_ecl[w].getStatus()) {
case Well::Status::SHUT:
this->shutWell(w);
break;
case Well::Status::STOP:
this->stopWell(w);
break;
default:
this->openWell(w);
break;
}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if (prevState && !prevState->wellMap().empty()) {
auto end = prevState->wellMap().end();
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT) {
continue;
}
auto it = prevState->wellMap().find(well.name());
if (it != end)
{
const int newIndex = w;
const int oldIndex = it->second[ 0 ];
if (prevState->status_[oldIndex] == Well::Status::SHUT) {
// Well was shut in previous state, do not use its values.
continue;
}
if (is_producer_[newIndex] != prevState->is_producer_[oldIndex]) {
// Well changed to/from injector from/to producer, do not use its privious values.
continue;
}
// bhp
this->update_bhp( newIndex, prevState->bhp( oldIndex ));
// thp
this->update_thp( newIndex, prevState->thp( oldIndex ));
// If new target is set using WCONPROD, WCONINJE etc. we use the new control
if (!this->events_[w].hasEvent(WellStateFullyImplicitBlackoil::event_mask)) {
current_injection_controls_[ newIndex ] = prevState->currentInjectionControl(oldIndex);
current_production_controls_[ newIndex ] = prevState->currentProductionControl(oldIndex);
}
wellRates(w) = prevState->wellRates(oldIndex);
wellReservoirRates(w) = prevState->wellReservoirRates(oldIndex);
// Well potentials
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellPotentials()[ idx ] = prevState->wellPotentials()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const auto new_iter = this->wellMap().find(well.name());
if (new_iter == this->wellMap().end()) {
throw std::logic_error {
well.name() + " is not in internal well map - "
"Bug in WellStateFullyImplicitBlackoil"
};
}
const int connpos = new_iter->second[1];
const int num_perf_this_well = new_iter->second[2];
const int num_perf_changed = parallel_well_info[w]->communication()
.sum(static_cast<int>(num_perf_old_well != num_perf_this_well));
const bool global_num_perf_same = num_perf_changed == 0;
// copy perforation rates when the number of
// perforations is equal, otherwise initialize
// perfphaserates to well rates divided by the
// number of perforations.
if (global_num_perf_same)
{
const auto * src_rates = &prevState->perfPhaseRates()[oldPerf_idx_beg* np];
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
for (int p = 0; p < np; p++) {
target_rates[perf_index*np + p] = src_rates[perf_index*np + p];
}
}
} else {
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
for (int p = 0; p < np; ++p) {
target_rates[perf_index*np + p] = wellRates(w)[p] / double(global_num_perf_this_well);
}
}
}
// perfPressures
if (global_num_perf_same)
{
auto& target_press = perfPress(w);
const auto& src_press = prevState->perfPress(well.name());
for (int perf = 0; perf < num_perf_this_well; ++perf)
{
target_press[perf] = src_press[perf];
}
}
// perfSolventRates
if (pu.has_solvent) {
if (global_num_perf_same)
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
}
}
}
// polymer injectivity related
//
// here we did not consider the case that we close
// some perforation during the running and also,
// wells can be shut and re-opened
if (pu.has_polymermw) {
if (global_num_perf_same)
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perf_water_throughput_[ perf ] = prevState->perfThroughput()[ oldPerf_idx ];
perf_skin_pressure_[ perf ] = prevState->perfSkinPressure()[ oldPerf_idx ];
perf_water_velocity_[ perf ] = prevState->perfWaterVelocity()[ oldPerf_idx ];
}
}
}
// Productivity index.
{
auto* thisWellPI = &this ->productivityIndex()[newIndex*np + 0];
const auto* thatWellPI = &prevState->productivityIndex()[oldIndex*np + 0];
for (int p = 0; p < np; ++p) {
thisWellPI[p] = thatWellPI[p];
}
}
}
// If in the new step, there is no THP related
// target/limit anymore, its thp value should be set to
// zero.
const bool has_thp = well.isInjector()
? well.injectionControls (summary_state).hasControl(Well::InjectorCMode::THP)
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
if (!has_thp) {
this->update_thp(w, 0.0);
}
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
nseg_ = nw;
top_segment_index_.resize(nw);
seg_number_.resize(nw);
seg_press_.resize(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_[w] = w;
seg_number_[w] = 1; // Top segment is segment #1
this->seg_press_[w] = this->bhp(w);
}
//seg_rates_ = wellRates();
seg_rates_.assign(nw*np, 0);
seg_pressdrop_.assign(nw, 0.);
seg_pressdrop_hydorstatic_.assign(nw, 0.);
seg_pressdrop_friction_.assign(nw, 0.);
seg_pressdrop_acceleration_.assign(nw, 0.);
}
updateWellsDefaultALQ(wells_ecl);
do_glift_optimization_ = true;
}
void WellStateFullyImplicitBlackoil::resize(const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
init(tmp, schedule, wells_ecl, parallel_well_info, 0, nullptr, well_perf_data, summary_state);
if (handle_ms_well) {
initWellStateMSWell(wells_ecl, nullptr);
}
}
const std::vector<double>&
WellStateFullyImplicitBlackoil::currentWellRates(const std::string& wellName) const
{
auto it = well_rates.find(wellName);
if (it == well_rates.end())
OPM_THROW(std::logic_error, "Could not find any rates for well " << wellName);
return it->second.second;
}
data::Wells
WellStateFullyImplicitBlackoil::report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const
{
data::Wells res =
WellState::report(globalCellIdxMap, wasDynamicallyClosed);
const int nw = this->numWells();
if (nw == 0) {
return res;
}
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector<rt> phs(np);
if (pu.phase_used[Water]) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
}
if (pu.phase_used[Oil]) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
}
if (pu.phase_used[Gas]) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
}
// This is a reference or example on **how** to convert from
// WellState to something understood by opm-common's output
// layer. It is intended to be properly implemented and
// maintained as a part of simulators, as it relies on simulator
// internals, details and representations.
for (const auto& wt : this->wellMap()) {
const auto w = wt.second[ 0 ];
if (((this->status_[w] == Well::Status::SHUT) &&
! wasDynamicallyClosed(w)) ||
! this->parallel_well_info_[w]->isOwner())
{
continue;
}
auto& well = res.at(wt.first);
const int well_rate_index = w * pu.num_phases;
const auto& reservoir_rates = this->well_reservoir_rates_[w];
if (pu.phase_used[Water]) {
const auto i = well_rate_index + pu.phase_pos[Water];
well.rates.set(rt::reservoir_water, reservoir_rates[pu.phase_pos[Water]]);
well.rates.set(rt::productivity_index_water, this->productivity_index_[i]);
well.rates.set(rt::well_potential_water, this->well_potentials_[i]);
}
if (pu.phase_used[Oil]) {
const auto i = well_rate_index + pu.phase_pos[Oil];
well.rates.set(rt::reservoir_oil, reservoir_rates[pu.phase_pos[Oil]]);
well.rates.set(rt::productivity_index_oil, this->productivity_index_[i]);
well.rates.set(rt::well_potential_oil, this->well_potentials_[i]);
}
if (pu.phase_used[Gas]) {
const auto i = well_rate_index + pu.phase_pos[Gas];
well.rates.set(rt::reservoir_gas, reservoir_rates[pu.phase_pos[Gas]]);
well.rates.set(rt::productivity_index_gas, this->productivity_index_[i]);
well.rates.set(rt::well_potential_gas, this->well_potentials_[i]);
}
if (pu.has_solvent || pu.has_zFraction) {
well.rates.set(rt::solvent, solventWellRate(w));
}
if (pu.has_polymer) {
well.rates.set(rt::polymer, polymerWellRate(w));
}
if (pu.has_brine) {
well.rates.set(rt::brine, brineWellRate(w));
}
if (is_producer_[w]) {
well.rates.set(rt::alq, getALQ(/*wellName=*/wt.first));
}
else {
well.rates.set(rt::alq, 0.0);
}
well.rates.set(rt::dissolved_gas, this->well_dissolved_gas_rates_[w]);
well.rates.set(rt::vaporized_oil, this->well_vaporized_oil_rates_[w]);
{
auto& curr = well.current_control;
curr.isProducer = this->is_producer_[w];
curr.prod = this->currentProductionControl(w);
curr.inj = this->currentInjectionControl(w);
}
const auto nseg = this->numSegments(w);
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
const auto seg_no = this->segmentNumber(w, seg_ix);
well.segments[seg_no] =
this->reportSegmentResults(pu, w, seg_ix, seg_no);
}
}
return res;
}
void WellStateFullyImplicitBlackoil::reportConnections(data::Well& well,
const PhaseUsage &pu,
const WellMapType::value_type& wt,
const int* globalCellIdxMap) const
{
using rt = data::Rates::opt;
WellState::reportConnections(well, pu, wt, globalCellIdxMap);
const int np = pu.num_phases;
size_t local_comp_index = 0;
std::vector< rt > phs( np );
std::vector<rt> pi(np);
if( pu.phase_used[Water] ) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
pi .at( pu.phase_pos[Water] ) = rt::productivity_index_water;
}
if( pu.phase_used[Oil] ) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
pi .at( pu.phase_pos[Oil] ) = rt::productivity_index_oil;
}
if( pu.phase_used[Gas] ) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
pi .at( pu.phase_pos[Gas] ) = rt::productivity_index_gas;
}
for( auto& comp : well.connections) {
const auto connPhaseOffset = np * (wt.second[1] + local_comp_index);
const auto rates = this->perfPhaseRates().begin() + connPhaseOffset;
const auto connPI = this->connectionProductivityIndex().begin() + connPhaseOffset;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
comp.rates.set( pi [ i ], *(connPI + i) );
}
if ( pu.has_polymer ) {
comp.rates.set( rt::polymer, this->perfRatePolymer()[wt.second[1] + local_comp_index]);
}
if ( pu.has_brine ) {
comp.rates.set( rt::brine, this->perfRateBrine()[wt.second[1] + local_comp_index]);
}
if ( pu.has_solvent ) {
comp.rates.set( rt::solvent, this->perfRateSolvent()[wt.second[1] + local_comp_index]);
}
++local_comp_index;
}
assert(local_comp_index == this->well_perf_data_[wt.second[0]].size());
}
void WellStateFullyImplicitBlackoil::initWellStateMSWell(const std::vector<Well>& wells_ecl,
const WellStateFullyImplicitBlackoil* prev_well_state)
{
// still using the order in wells
const int nw = wells_ecl.size();
if (nw == 0) {
return;
}
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
top_segment_index_.clear();
seg_press_.clear();
seg_rates_.clear();
seg_number_.clear();
nseg_ = 0;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const auto& well_ecl = wells_ecl[w];
const auto& wname = wells_ecl[w].name();
const auto& well_info = this->wellMap().at(wname);
const int connpos = well_info[1];
const int num_perf_this_well = well_info[2];
const auto& rates = this->wellRates(w);
top_segment_index_.push_back(nseg_);
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
nseg_ += 1;
seg_number_.push_back(1); // Assign single segment (top) as number 1.
seg_press_.push_back(bhp(w));
for (int p = 0; p < np; ++p) {
seg_rates_.push_back(rates[p]);
}
} else { // it is a multi-segment well
const WellSegments& segment_set = well_ecl.getSegments();
// assuming the order of the perforations in well_ecl is the same with Wells
const WellConnections& completion_set = well_ecl.getConnections();
// number of segment for this single well
const int well_nseg = segment_set.size();
int n_activeperf = 0;
nseg_ += well_nseg;
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
this->seg_number_.push_back(segment_set[segID].segmentNumber());
}
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
segment_perforations[segment_index].push_back(n_activeperf);
n_activeperf++;
}
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
// for the seg_rates_, now it becomes a recursive solution procedure.
{
const int start_perf = connpos;
// make sure the information from wells_ecl consistent with wells
assert((n_activeperf == num_perf_this_well) &&
"Inconsistent number of reservoir connections in well");
if (pu.phase_used[Gas]) {
auto * perf_rates = &this->mutable_perfPhaseRates()[np * start_perf];
const int gaspos = pu.phase_pos[Gas];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < n_activeperf; perf++)
perf_rates[perf*np + gaspos] *= 100;
}
const auto * perf_rates = &perfPhaseRates()[np*start_perf];
std::vector<double> perforation_rates(perf_rates, perf_rates + num_perf_this_well*np);
std::vector<double> segment_rates;
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(seg_rates_));
}
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
seg_press_.push_back(bhp(w));
const int top_segment = top_segment_index_[w];
const auto& perf_press = this->perfPress(w);
for (int seg = 1; seg < well_nseg; ++seg) {
if ( !segment_perforations[seg].empty() ) {
const int first_perf = segment_perforations[seg][0];
seg_press_.push_back(perf_press[first_perf]);
} else {
// seg_press_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
seg_press_.push_back(
seg_press_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
}
}
}
}
}
assert(int(seg_press_.size()) == nseg_);
assert(int(seg_rates_.size()) == nseg_ * numPhases() );
seg_pressdrop_.assign(nseg_, 0.);
seg_pressdrop_hydorstatic_.assign(nseg_, 0.);
seg_pressdrop_friction_.assign(nseg_, 0.);
seg_pressdrop_acceleration_.assign(nseg_, 0.);
if (prev_well_state && !prev_well_state->wellMap().empty()) {
const auto& end = prev_well_state->wellMap().end();
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT)
continue;
const auto& it = prev_well_state->wellMap().find( wells_ecl[w].name() );
if (it != end) { // the well is found in the prev_well_state
// TODO: the well with same name can change a lot, like they might not have same number of segments
// we need to handle that later.
// for now, we just copy them.
const int old_index_well = (*it).second[0];
const int new_index_well = w;
if (prev_well_state->status_[old_index_well] == Well::Status::SHUT) {
continue;
}
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
const int new_top_segment_index = topSegmentIndex(new_index_well);
int number_of_segment = 0;
// if it is the last well in list
if (new_index_well == int(top_segment_index_.size()) - 1) {
number_of_segment = nseg_ - new_top_segment_index;
} else {
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segment_index;
}
auto * segment_rates = &this->seg_rates_[new_top_segment_index*np];
auto * segment_pressure = &this->seg_press_[new_top_segment_index];
const auto * prev_segment_rates = &prev_well_state->segRates()[old_top_segment_index*np];
const auto * prev_segment_pressure = &prev_well_state->segPress()[new_top_segment_index];
for (int seg=0; seg < number_of_segment; ++seg) {
for (int p = 0; p < np; ++p)
segment_rates[seg*np + p] = prev_segment_rates[seg*np + p];
segment_pressure[seg] = prev_segment_pressure[seg];
}
}
}
}
}
void
WellStateFullyImplicitBlackoil::calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets,
const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates,
const int np, const int segment,
std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
double WellStateFullyImplicitBlackoil::solventWellRate(const int w) const
{
return parallel_well_info_[w]->sumPerfValues(&perfRateSolvent_[0] + first_perf_index_[w],
&perfRateSolvent_[0] + first_perf_index_[w] + num_perf_[w]);
}
double WellStateFullyImplicitBlackoil::polymerWellRate(const int w) const
{
return parallel_well_info_[w]->sumPerfValues(&perfRatePolymer_[0] + first_perf_index_[w],
&perfRatePolymer_[0] + first_perf_index_[w] + num_perf_[w]);
}
double WellStateFullyImplicitBlackoil::brineWellRate(const int w) const
{
return parallel_well_info_[w]->sumPerfValues(&perfRateBrine_[0] + first_perf_index_[w],
&perfRateBrine_[0] + first_perf_index_[w] + num_perf_[w]);
}
int WellStateFullyImplicitBlackoil::topSegmentIndex(const int w) const
{
assert(w < int(top_segment_index_.size()) );
return top_segment_index_[w];
}
void WellStateFullyImplicitBlackoil::shutWell(int well_index)
{
WellState::shutWell(well_index);
const int np = numPhases();
auto& resv = this->well_reservoir_rates_[well_index];
auto* wpi = &this->productivity_index_[np*well_index + 0];
for (int p = 0; p < np; ++p) {
resv[p] = 0.0;
wpi[p] = 0.0;
}
const auto first = this->first_perf_index_[well_index]*np;
const auto last = first + this->num_perf_[well_index]*np;
std::fill(this->conn_productivity_index_.begin() + first,
this->conn_productivity_index_.begin() + last, 0.0);
}
template<class Comm>
void WellStateFullyImplicitBlackoil::communicateGroupRates(const Comm& comm)
{
// Note that injection_group_vrep_rates is handled separate from
// the forAllGroupData() function, since it contains single doubles,
// not vectors.
// Create a function that calls some function
// for all the individual data items to simplify
// the further code.
auto iterateRatesContainer = [](auto& container, auto& func) {
for (auto& x : container) {
if (x.second.first)
{
func(x.second.second);
}
else
{
// We might actually store non-zero values for
// distributed wells even if they are not owned.
std::vector<double> dummyRate;
dummyRate.assign(x.second.second.size(), 0);
func(dummyRate);
}
}
};
// Compute the size of the data.
std::size_t sz = 0;
auto computeSize = [&sz](const auto& v) {
sz += v.size();
};
iterateRatesContainer(this->well_rates, computeSize);
sz += this->alq_state.pack_size();
// Make a vector and collect all data into it.
std::vector<double> data(sz);
std::size_t pos = 0;
auto collect = [&data, &pos](const auto& v) {
for (const auto& x : v) {
data[pos++] = x;
}
};
iterateRatesContainer(this->well_rates, collect);
pos += this->alq_state.pack_data(&data[pos]);
assert(pos == sz);
// Communicate it with a single sum() call.
comm.sum(data.data(), data.size());
// Distribute the summed vector to the data items.
pos = 0;
auto distribute = [&data, &pos](auto& v) {
for (auto& x : v) {
x = data[pos++];
}
};
iterateRatesContainer(this->well_rates, distribute);
pos += this->alq_state.unpack_data(&data[pos]);
assert(pos == sz);
}
template<class Comm>
void WellStateFullyImplicitBlackoil::updateGlobalIsGrup(const Comm& comm)
{
this->global_well_info.value().update_group(this->status_.data(), this->current_injection_controls_.data(), this->current_production_controls_.data());
this->global_well_info.value().communicate(comm);
}
data::Segment
WellStateFullyImplicitBlackoil::reportSegmentResults(const PhaseUsage& pu,
const int well_id,
const int seg_ix,
const int seg_no) const
{
auto seg_res = data::Segment{};
const auto seg_dof =
this->topSegmentIndex(well_id) + seg_ix;
const auto* rate =
&this->segRates()[seg_dof * this->numPhases()];
{
using Value = data::SegmentPressures::Value;
auto& segpress = seg_res.pressures;
segpress[Value::Pressure] = this->segPress()[seg_dof];
segpress[Value::PDrop] = this->segPressDrop()[seg_dof];
segpress[Value::PDropHydrostatic] = this->segPressDropHydroStatic()[seg_dof];
segpress[Value::PDropFriction] = this->segPressDropFriction()[seg_dof];
segpress[Value::PDropAccel] = this->segPressDropAcceleration()[seg_dof];
}
if (pu.phase_used[Water]) {
seg_res.rates.set(data::Rates::opt::wat,
rate[pu.phase_pos[Water]]);
}
if (pu.phase_used[Oil]) {
seg_res.rates.set(data::Rates::opt::oil,
rate[pu.phase_pos[Oil]]);
}
if (pu.phase_used[Gas]) {
seg_res.rates.set(data::Rates::opt::gas,
rate[pu.phase_pos[Gas]]);
}
seg_res.segNumber = seg_no;
return seg_res;
}
int WellStateFullyImplicitBlackoil::numSegments(const int well_id) const
{
const auto topseg = this->topSegmentIndex(well_id);
return (well_id + 1 == this->numWells()) // Last well?
? (this->numSegment() - topseg)
: (this->topSegmentIndex(well_id + 1) - topseg);
}
int WellStateFullyImplicitBlackoil::segmentNumber(const int well_id, const int seg_id) const
{
const auto top_offset = this->topSegmentIndex(well_id);
return this->seg_number_[top_offset + seg_id];
}
void WellStateFullyImplicitBlackoil::updateWellsDefaultALQ( const std::vector<Well>& wells_ecl )
{
const int nw = wells_ecl.size();
for (int i = 0; i<nw; i++) {
const Well &well = wells_ecl[i];
if (well.isProducer()) {
// NOTE: This is the value set in item 12 of WCONPROD, or with WELTARG
auto alq = well.alq_value();
this->alq_state.update_default(well.name(), alq);
}
}
}
template void WellStateFullyImplicitBlackoil::updateGlobalIsGrup<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
template void WellStateFullyImplicitBlackoil::communicateGroupRates<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
} // namespace Opm

View File

@ -1,488 +0,0 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/ALQState.hpp>
#include <opm/simulators/wells/GlobalWellInfo.hpp>
#include <opm/simulators/wells/WellContainer.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <functional>
#include <map>
#include <optional>
#include <string>
#include <utility>
#include <vector>
namespace Opm
{
class ParallelWellInfo;
class Schedule;
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
static const uint64_t event_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE;
typedef BaseType :: WellMapType WellMapType;
virtual ~WellStateFullyImplicitBlackoil() = default;
// TODO: same definition with WellInterface, eventually they should go to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
using BaseType :: resetConnectionTransFactors;
using BaseType :: updateStatus;
explicit WellStateFullyImplicitBlackoil(const PhaseUsage& pu) :
WellState(pu)
{
}
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
void init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const int report_step,
const WellStateFullyImplicitBlackoil* prevState,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state);
void resize(const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state);
/// One rate per phase and well connection.
std::vector<double>& mutable_perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per injecting well.
Well::InjectorCMode currentInjectionControl(std::size_t well_index) const { return current_injection_controls_[well_index]; }
void currentInjectionControl(std::size_t well_index, Well::InjectorCMode cmode) { current_injection_controls_[well_index] = cmode; }
/// One current control per producing well.
Well::ProducerCMode currentProductionControl(std::size_t well_index) const { return current_production_controls_[well_index]; }
void currentProductionControl(std::size_t well_index, Well::ProducerCMode cmode) { current_production_controls_[well_index] = cmode; }
void setCurrentWellRates(const std::string& wellName, const std::vector<double>& rates ) {
well_rates[wellName].second = rates;
}
const std::vector<double>& currentWellRates(const std::string& wellName) const;
bool hasWellRates(const std::string& wellName) const {
return this->well_rates.find(wellName) != this->well_rates.end();
}
data::Wells
report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const override;
void reportConnections(data::Well& well, const PhaseUsage &pu,
const WellMapType::value_type& wt,
const int* globalCellIdxMap) const override;
/// init the MS well related.
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
const WellStateFullyImplicitBlackoil* prev_well_state);
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates);
Events& events(std::size_t well_index) {
return this->events_[well_index];
}
const std::vector<int>& firstPerfIndex() const
{
return first_perf_index_;
}
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const;
/// One rate pr well connection.
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
/// One rate pr well
double polymerWellRate(const int w) const;
/// One rate pr well connection.
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
/// One rate pr well
double brineWellRate(const int w) const;
const WellContainer<std::vector<double>>& wellReservoirRates() const { return well_reservoir_rates_; }
std::vector<double>& wellReservoirRates(std::size_t well_index)
{
return well_reservoir_rates_[well_index];
}
const std::vector<double>& wellReservoirRates(std::size_t well_index) const
{
return well_reservoir_rates_[well_index];
}
std::vector<double>& wellDissolvedGasRates()
{
return well_dissolved_gas_rates_;
}
std::vector<double>& wellVaporizedOilRates()
{
return well_vaporized_oil_rates_;
}
const std::vector<double>& segRates() const
{
return seg_rates_;
}
std::vector<double>& segRates()
{
return seg_rates_;
}
const std::vector<double>& segPress() const
{
return seg_press_;
}
std::vector<double>& segPressDrop()
{
return seg_pressdrop_;
}
const std::vector<double>& segPressDrop() const
{
return seg_pressdrop_;
}
std::vector<double>& segPressDropFriction()
{
return seg_pressdrop_friction_;
}
const std::vector<double>& segPressDropFriction() const
{
return seg_pressdrop_friction_;
}
std::vector<double>& segPressDropHydroStatic()
{
return seg_pressdrop_hydorstatic_;
}
const std::vector<double>& segPressDropHydroStatic() const
{
return seg_pressdrop_hydorstatic_;
}
std::vector<double>& segPressDropAcceleration()
{
return seg_pressdrop_acceleration_;
}
const std::vector<double>& segPressDropAcceleration() const
{
return seg_pressdrop_acceleration_;
}
std::vector<double>& segPress()
{
return seg_press_;
}
int numSegment() const
{
return nseg_;
}
int topSegmentIndex(const int w) const;
std::vector<double>& productivityIndex() {
return productivity_index_;
}
const std::vector<double>& productivityIndex() const {
return productivity_index_;
}
std::vector<double>& connectionProductivityIndex() {
return this->conn_productivity_index_;
}
const std::vector<double>& connectionProductivityIndex() const {
return this->conn_productivity_index_;
}
std::vector<double>& wellPotentials() {
return well_potentials_;
}
const std::vector<double>& wellPotentials() const {
return well_potentials_;
}
std::vector<double>& perfThroughput() {
return perf_water_throughput_;
}
const std::vector<double>& perfThroughput() const {
return perf_water_throughput_;
}
std::vector<double>& perfSkinPressure() {
return perf_skin_pressure_;
}
const std::vector<double>& perfSkinPressure() const {
return perf_skin_pressure_;
}
std::vector<double>& perfWaterVelocity() {
return perf_water_velocity_;
}
const std::vector<double>& perfWaterVelocity() const {
return perf_water_velocity_;
}
void shutWell(int well_index) override;
template<class Comm>
void communicateGroupRates(const Comm& comm);
template<class Comm>
void updateGlobalIsGrup(const Comm& comm);
bool isInjectionGrup(const std::string& name) const {
return this->global_well_info.value().in_injecting_group(name);
}
bool isProductionGrup(const std::string& name) const {
return this->global_well_info.value().in_producing_group(name);
}
double getALQ( const std::string& name) const
{
return this->alq_state.get(name);
}
void setALQ( const std::string& name, double value)
{
this->alq_state.set(name, value);
}
bool gliftCheckAlqOscillation(const std::string &name) const {
return this->alq_state.oscillation(name);
}
int gliftGetAlqDecreaseCount(const std::string &name) {
return this->alq_state.get_decrement_count(name);
}
int gliftGetAlqIncreaseCount(const std::string &name) {
return this->alq_state.get_increment_count(name);
}
void gliftUpdateAlqIncreaseCount(const std::string &name, bool increase) {
this->alq_state.update_count(name, increase);
}
bool gliftOptimizationEnabled() const {
return do_glift_optimization_;
}
void gliftTimeStepInit() {
this->alq_state.reset_count();
disableGliftOptimization();
}
void disableGliftOptimization() {
do_glift_optimization_ = false;
}
void enableGliftOptimization() {
do_glift_optimization_ = true;
}
int wellNameToGlobalIdx(const std::string &name) {
return this->global_well_info.value().well_index(name);
}
std::string globalIdxToWellName(const int index) {
return this->global_well_info.value().well_name(index);
}
private:
std::vector<double> perfphaserates_;
WellContainer<int> is_producer_; // Size equal to number of local wells.
// vector with size number of wells +1.
// iterate over all perforations of a given well
// for (int perf = first_perf_index_[well_index]; perf < first_perf_index_[well_index] + num_perf_[well_index]; ++perf)
std::vector<int> first_perf_index_;
std::vector<int> num_perf_;
WellContainer<Opm::Well::InjectorCMode> current_injection_controls_;
WellContainer<Well::ProducerCMode> current_production_controls_;
// Use of std::optional<> here is a technical crutch, the
// WellStateFullyImplicitBlackoil class should be default constructible,
// whereas the GlobalWellInfo is not.
std::optional<GlobalWellInfo> global_well_info;
std::map<std::string, std::pair<bool, std::vector<double>>> well_rates;
ALQState alq_state;
bool do_glift_optimization_;
std::vector<double> perfRateSolvent_;
// only for output
std::vector<double> perfRatePolymer_;
std::vector<double> perfRateBrine_;
// it is the throughput of water flow through the perforations
// it is used as a measure of formation damage around well-bore due to particle deposition
// it will only be used for injectors to check the injectivity
std::vector<double> perf_water_throughput_;
// skin pressure of peforation
// it will only be used for injectors to check the injectivity
std::vector<double> perf_skin_pressure_;
// it will only be used for injectors to check the injectivity
// water velocity of perforation
std::vector<double> perf_water_velocity_;
// phase rates under reservoir condition for wells
// or voidage phase rates
WellContainer<std::vector<double>> well_reservoir_rates_;
// dissolved gas rates or solution gas production rates
// should be zero for injection wells
std::vector<double> well_dissolved_gas_rates_;
// vaporized oil rates or solution oil producation rates
// should be zero for injection wells
std::vector<double> well_vaporized_oil_rates_;
// some events happens to the well, like this well is a new well
// or new well control keywords happens
// \Note: for now, only WCON* keywords, and well status change is considered
WellContainer<Events> events_;
// MS well related
// for StandardWell, the number of segments will be one
std::vector<double> seg_rates_;
std::vector<double> seg_press_;
// the index of the top segments, which is used to locate the
// multisegment well related information in WellState
std::vector<int> top_segment_index_;
int nseg_; // total number of the segments
// The following data are only recorded for output
// pressure drop
std::vector<double> seg_pressdrop_;
// frictional pressure drop
std::vector<double> seg_pressdrop_friction_;
// hydrostatic pressure drop
std::vector<double> seg_pressdrop_hydorstatic_;
// accelerational pressure drop
std::vector<double> seg_pressdrop_acceleration_;
// Productivity Index
std::vector<double> productivity_index_;
// Connection-level Productivity Index
std::vector<double> conn_productivity_index_;
// Well potentials
std::vector<double> well_potentials_;
/// Map segment index to segment number, mostly for MS wells.
///
/// Segment number (one-based) of j-th segment in i-th well is
/// \code
/// const auto top = topSegmentIndex(i);
/// const auto seg_No = seg_number_[top + j];
/// \end
std::vector<int> seg_number_;
data::Segment
reportSegmentResults(const PhaseUsage& pu,
const int well_id,
const int seg_ix,
const int seg_no) const;
int numSegments(const int well_id) const;
int segmentNumber(const int well_id, const int seg_id) const;
// If the ALQ has changed since the previous report step,
// reset current_alq and update default_alq. ALQ is used for
// constant lift gas injection and for gas lift optimization
// (THP controlled wells).
//
// NOTE: If a well is no longer used (e.g. it is shut down)
// it is still kept in the maps "default_alq_" and "current_alq_". Since the
// number of unused entries should be small (negligible memory
// overhead) this is simpler than writing code to delete it.
//
void updateWellsDefaultALQ(const std::vector<Well>& wells_ecl);
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED

View File

@ -40,7 +40,7 @@
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
//#include <opm/simulators/flow/SimulatorFullyImplicitBlackoilEbos.hpp>
//#include <flow/flow_ebos_blackoil.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
/// #include <opm/simulators/flow/Main.hpp>
#if HAVE_DUNE_FEM
@ -119,7 +119,7 @@ BOOST_AUTO_TEST_CASE(G1)
//using EclProblem = Opm::EclProblem<TypeTag>;
//using EclWellModel = typename EclProblem::EclWellModel;
using WellModel = Opm::BlackoilWellModel<TypeTag>;
using WellState = Opm::WellStateFullyImplicitBlackoil;
using WellState = Opm::WellState;
using StdWell = Opm::StandardWell<TypeTag>;
using GasLiftSingleWell = Opm::GasLiftSingleWell<TypeTag>;
const std::string filename = "GLIFT1.DATA";

View File

@ -25,7 +25,7 @@
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/wells/GlobalWellInfo.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WellContainer.hpp>
#include <opm/parser/eclipse/Python/Python.hpp>
@ -123,11 +123,11 @@ struct Setup
};
namespace {
Opm::WellStateFullyImplicitBlackoil
Opm::WellState
buildWellState(const Setup& setup, const std::size_t timeStep,
std::vector<Opm::ParallelWellInfo>& pinfos)
{
auto state = Opm::WellStateFullyImplicitBlackoil{setup.pu};
auto state = Opm::WellState{setup.pu};
const auto cpress =
std::vector<double>(setup.grid.c_grid()->number_of_cells,
@ -160,7 +160,7 @@ namespace {
void setSegPress(const std::vector<Opm::Well>& wells,
Opm::WellStateFullyImplicitBlackoil& wstate)
Opm::WellState& wstate)
{
const auto nWell = wells.size();
@ -193,7 +193,7 @@ namespace {
void setSegRates(const std::vector<Opm::Well>& wells,
const Opm::PhaseUsage& pu,
Opm::WellStateFullyImplicitBlackoil& wstate)
Opm::WellState& wstate)
{
const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua];
const auto iw = wat ? pu.phase_pos[Opm::BlackoilPhases::Aqua] : -1;