mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-12 09:21:56 -06:00
8445c802c0
it calculate bhp value based on THP target/limit, VFP curves and inflow-performance relationship
246 lines
9.4 KiB
C++
246 lines
9.4 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/autodiff/VFPHelpers.hpp>
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties() {
|
|
|
|
}
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
|
|
m_tables[table->getTableNum()] = table;
|
|
}
|
|
|
|
|
|
VFPProdProperties::VFPProdProperties(const VFPProdProperties::ProdTable& tables) {
|
|
for (const auto& table : tables) {
|
|
m_tables[table.first] = table.second.get();
|
|
}
|
|
}
|
|
|
|
|
|
double VFPProdProperties::thp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& bhp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
|
const VFPProdTable::array_type& data = table->getTable();
|
|
|
|
//Find interpolation variables
|
|
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
|
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
|
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
|
|
|
const std::vector<double> thp_array = table->getTHPAxis();
|
|
int nthp = thp_array.size();
|
|
|
|
/**
|
|
* Find the function bhp_array(thp) by creating a 1D view of the data
|
|
* by interpolating for every value of thp. This might be somewhat
|
|
* expensive, but let us assome that nthp is small
|
|
* Recall that flo is negative in Opm, so switch the sign
|
|
*/
|
|
auto flo_i = detail::findInterpData(-flo, table->getFloAxis());
|
|
auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table->getALQAxis());
|
|
std::vector<double> bhp_array(nthp);
|
|
for (int i=0; i<nthp; ++i) {
|
|
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
|
|
bhp_array[i] = detail::interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
|
|
}
|
|
|
|
double retval = detail::findTHP(bhp_array, thp_array, bhp_arg);
|
|
return retval;
|
|
}
|
|
|
|
|
|
double VFPProdProperties::bhp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& thp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
|
|
|
detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp_arg, alq);
|
|
return retval.value;
|
|
}
|
|
|
|
|
|
const VFPProdTable* VFPProdProperties::getTable(const int table_id) const {
|
|
return detail::getTable(m_tables, table_id);
|
|
}
|
|
|
|
bool VFPProdProperties::hasTable(const int table_id) const {
|
|
return detail::hasTable(m_tables, table_id);
|
|
}
|
|
|
|
|
|
std::vector<double>
|
|
VFPProdProperties::
|
|
bhpwithflo(const std::vector<double>& flos,
|
|
const int table_id,
|
|
const double wfr,
|
|
const double gfr,
|
|
const double thp,
|
|
const double alq,
|
|
const double dp) const
|
|
{
|
|
// Get the table
|
|
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
|
const auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
|
|
const auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis());
|
|
const auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis());
|
|
const auto alq_i = detail::findInterpData( alq, table->getALQAxis()); //assume constant
|
|
|
|
std::vector<double> bhps(flos.size(), 0.);
|
|
for (size_t i = 0; i < flos.size(); ++i) {
|
|
// Value of FLO is negative in OPM for producers, but positive in VFP table
|
|
const auto flo_i = detail::findInterpData(-flos[i], table->getFloAxis());
|
|
const detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
// TODO: this kind of breaks the conventions for the functions here by putting dp within the function
|
|
bhps[i] = bhp_val.value - dp;
|
|
}
|
|
|
|
return bhps;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double
|
|
VFPProdProperties::
|
|
calculateBhpWithTHPTarget(const std::vector<double>& ipr_a,
|
|
const std::vector<double>& ipr_b,
|
|
const double bhp_limit,
|
|
const double thp_table_id,
|
|
const double thp_limit,
|
|
const double alq,
|
|
const double dp) const
|
|
{
|
|
// For producers, bhp_safe_limit is the highest BHP value that can still produce based on IPR
|
|
double bhp_safe_limit = 1.e100;
|
|
for (size_t i = 0; i < ipr_a.size(); ++i) {
|
|
if (ipr_b[i] == 0.) continue;
|
|
|
|
const double bhp = ipr_a[i] / ipr_b[i];
|
|
if (bhp < bhp_safe_limit) {
|
|
bhp_safe_limit = bhp;
|
|
}
|
|
}
|
|
|
|
// Here, we use the middle point between the bhp_limit and bhp_safe_limit to calculate the ratio of the flow
|
|
// and the middle point serves one of the two points to describe inflow performance relationship line
|
|
const double bhp_middle = (bhp_limit + bhp_safe_limit) / 2.0;
|
|
|
|
// FLO is the rate based on the type specified with the VFP table
|
|
// The two points correspond to the bhp values of bhp_limit, and the middle of bhp_limit and bhp_safe_limit
|
|
// for producers, the rates are negative
|
|
std::vector<double> rates_bhp_limit(ipr_a.size());
|
|
std::vector<double> rates_bhp_middle(ipr_a.size());
|
|
for (size_t i = 0; i < rates_bhp_limit.size(); ++i) {
|
|
rates_bhp_limit[i] = bhp_limit * ipr_b[i] - ipr_a[i];
|
|
rates_bhp_middle[i] = bhp_middle * ipr_b[i] - ipr_a[i];
|
|
}
|
|
|
|
// TODO: we need to be careful that there is nothings wrong related to the indices here
|
|
const int Water = BlackoilPhases::Aqua;
|
|
const int Oil = BlackoilPhases::Liquid;
|
|
const int Gas = BlackoilPhases::Vapour;
|
|
|
|
const VFPProdTable* table = detail::getTable(m_tables, thp_table_id);
|
|
const double aqua_bhp_limit = rates_bhp_limit[Water];
|
|
const double liquid_bhp_limit = rates_bhp_limit[Oil];
|
|
const double vapour_bhp_limit = rates_bhp_limit[Gas];
|
|
const double flo_bhp_limit = detail::getFlo(aqua_bhp_limit, liquid_bhp_limit, vapour_bhp_limit, table->getFloType() );
|
|
|
|
const double aqua_bhp_middle = rates_bhp_middle[Water];
|
|
const double liquid_bhp_middle = rates_bhp_middle[Oil];
|
|
const double vapour_bhp_middle = rates_bhp_middle[Gas];
|
|
const double flo_bhp_middle = detail::getFlo(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getFloType() );
|
|
|
|
// we use the ratios based on the middle value of bhp_limit and bhp_safe_limit
|
|
const double wfr = detail::getWFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getWFRType());
|
|
const double gfr = detail::getGFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getGFRType());
|
|
|
|
// we get the flo sampling points from the table,
|
|
// then extend it with zero and rate under bhp_limit for extrapolation
|
|
std::vector<double> flo_samples = table->getFloAxis();
|
|
|
|
if (flo_samples[0] > 0.) {
|
|
flo_samples.insert(flo_samples.begin(), 0.);
|
|
}
|
|
|
|
if (flo_samples.back() < std::abs(flo_bhp_limit)) {
|
|
flo_samples.push_back(std::abs(flo_bhp_limit));
|
|
}
|
|
|
|
// kind of unncessarily following the tradation that producers should have negative rates
|
|
// the key is here that it should be consistent with the function bhpwithflo
|
|
for (double& value : flo_samples) {
|
|
value = -value;
|
|
}
|
|
|
|
// get the bhp sampling values based on the flo sample values
|
|
const std::vector<double> bhp_flo_samples = bhpwithflo(flo_samples, thp_table_id, wfr, gfr, thp_limit, alq, dp);
|
|
|
|
double obtain_bhp = 0.;
|
|
const bool obtain_solution_with_thp_limit = detail::findIntersectionForBhp(flo_samples, bhp_flo_samples,
|
|
flo_bhp_middle, flo_bhp_limit, bhp_middle, bhp_limit, obtain_bhp);
|
|
|
|
// \Note: assuming not that negative BHP does not make sense
|
|
if (obtain_solution_with_thp_limit && obtain_bhp > 0.) {
|
|
// getting too high bhp that might cause negative rates (rates in the undesired direction)
|
|
if (obtain_bhp >= bhp_safe_limit) {
|
|
std::cout << " Look like we are getting a too high BHP value from the THP constraint "
|
|
<< " which might cause problems later " << std::endl;
|
|
|
|
std::cout << " obtain_bhp " << obtain_bhp << " bhp_safe_limit " << bhp_safe_limit << std::endl;
|
|
}
|
|
return obtain_bhp;
|
|
} else {
|
|
std::cout << " COULD NOT find an Intersection point " << std::endl;
|
|
return -100.;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
}
|