Added executable example for compressible with polymer.

This commit is contained in:
Xavier Raynaud 2012-09-03 13:52:59 +02:00
parent 8bf900f1bf
commit 8752f14015
4 changed files with 326 additions and 3 deletions

View File

@ -8,6 +8,7 @@ lib_LTLIBRARIES = libopmpolymer.la
libopmpolymer_la_SOURCES = \
opm/polymer/IncompTpfaPolymer.cpp \
opm/polymer/CompressibleTpfaPolymer.cpp \
opm/polymer/SimulatorPolymer.cpp \
opm/polymer/SimulatorCompressiblePolymer.cpp \
opm/polymer/TransportModelPolymer.cpp \
@ -20,6 +21,7 @@ opm/polymer/GravityColumnSolverPolymer.hpp \
opm/polymer/GravityColumnSolverPolymer_impl.hpp \
opm/polymer/IncompPropertiesDefaultPolymer.hpp \
opm/polymer/IncompTpfaPolymer.hpp \
opm/polymer/CompressibleTpfaPolymer.hpp \
opm/polymer/PolymerProperties.hpp \
opm/polymer/PolymerState.hpp \
opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp \

View File

@ -12,6 +12,7 @@ $(BOOST_SYSTEM_LIB)
noinst_PROGRAMS = \
polymer_reorder \
sim_poly2p_incomp_reorder \
sim_poly2p_comp_reorder \
test_singlecellsolves
polymer_reorder_SOURCES = \
@ -20,6 +21,9 @@ polymer_reorder.cpp
sim_poly2p_incomp_reorder_SOURCES = \
sim_poly2p_incomp_reorder.cpp
sim_poly2p_comp_reorder_SOURCES = \
sim_poly2p_comp_reorder.cpp
test_singlecellsolves_SOURCES = \
test_singlecellsolves.cpp

View File

@ -0,0 +1,319 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/BlackoilPropertiesBasic.hpp>
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SimulatorCompressiblePolymer.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<EclipseGridParser> deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<BlackoilPropertiesInterface> props;
boost::scoped_ptr<RockCompressibility> rock_comp;
PolymerBlackoilState state;
Opm::PolymerProperties poly_props;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new GridManager(*deck));
// Rock and fluid init
props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid()));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
rock_comp.reset(new RockCompressibility(*deck));
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
} else {
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
}
initBlackoilSurfvol(*grid->c_grid(), *props, state);
// Init polymer properties.
poly_props.readFromDeck(*deck);
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
initBlackoilSurfvol(*grid->c_grid(), *props, state);
// Init Polymer state
if (param.has("poly_init")) {
double poly_init = param.getDefault("poly_init", 0.0);
for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
double smin[2], smax[2];
props->satRange(1, &cell, smin, smax);
if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
state.concentration()[cell] = poly_init;
state.maxconcentration()[cell] = poly_init;
} else {
state.saturation()[2*cell + 0] = 0.;
state.saturation()[2*cell + 1] = 1.;
state.concentration()[cell] = 0.;
state.maxconcentration()[cell] = 0.;
}
}
}
// Init polymer properties.
// Setting defaults to provide a simple example case.
double c_max = param.getDefault("c_max_limit", 5.0);
double mix_param = param.getDefault("mix_param", 1.0);
double rock_density = param.getDefault("rock_density", 1000.0);
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
double c_max_ads = param.getDefault("c_max_ads", 1.);
int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
std::vector<double> c_vals_visc(2, -1e100);
c_vals_visc[0] = 0.0;
c_vals_visc[1] = 7.0;
std::vector<double> visc_mult_vals(2, -1e100);
visc_mult_vals[0] = 1.0;
// poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
visc_mult_vals[1] = 20.0;
std::vector<double> c_vals_ads(3, -1e100);
c_vals_ads[0] = 0.0;
c_vals_ads[1] = 2.0;
c_vals_ads[2] = 8.0;
std::vector<double> ads_vals(3, -1e100);
ads_vals[0] = 0.0;
ads_vals[1] = 0.0015;
ads_vals[2] = 0.0025;
// ads_vals[1] = 0.0;
// ads_vals[2] = 0.0;
poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
if (output) {
std::string output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of epochs: "
<< (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;
SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
SimulatorCompressiblePolymer simulator(param,
*grid->c_grid(),
*props,
poly_props,
rock_comp->isActive() ? rock_comp.get() : 0,
0, // wells
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
WellState well_state;
well_state.init(0, state);
rep = simulator.run(simtimer, state, well_state);
} else {
// With a deck, we may have more epochs etc.
WellState well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck);
const double total_time = simtimer.totalTime();
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index.
deck->setCurrentEpoch(epoch);
// Update the timer.
if (deck->hasField("TSTEP")) {
simtimer.init(*deck);
} else {
if (epoch != 0) {
THROW("No TSTEP in deck for epoch " << epoch);
}
simtimer.init(param);
}
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of epoch.
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
if (epoch == 0) {
well_state.init(wells.c_wells(), state);
}
// Create and run simulator.
SimulatorCompressiblePolymer simulator(param,
*grid->c_grid(),
*props,
poly_props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells.c_wells(),
src,
bcs.c_bcs(),
linsolver,
grav);
if (epoch == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
}

View File

@ -130,15 +130,13 @@ namespace Opm
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
const double* cell_z = &state.surfacevol()[0];
const double* cell_s = &state.saturation()[0];
cell_A_.resize(nc*np*np);
cell_dA_.resize(nc*np*np);
props_.matrix(nc, cell_p, cell_z, &allcells_[0], &cell_A_[0], &cell_dA_[0]);
cell_viscosity_.resize(nc*np);
props_.viscosity(nc, cell_p, cell_z, &allcells_[0], &cell_viscosity_[0], 0);
cell_phasemob_.resize(nc*np);
poly_props_.effective
for (int cell; cell < nc; ++cell) {
for (int cell = 0; cell < nc; ++cell) {
poly_props_.effectiveVisc((*c_)[cell], &cell_viscosity_[nc + 0], cell_eff_viscosity_[nc + 0]);
poly_props_.effectiveMobilities((*c_)[cell], (*cmax_)[cell], &cell_viscosity_[nc + 0], &cell_relperm_[nc + 0], &cell_phasemob_[nc + 0]);
}