mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Remove functions that were moved to NewtonIterationUtilities.
This commit is contained in:
parent
c8cae85ea2
commit
9e28857933
@ -25,12 +25,15 @@
|
||||
#include <opm/autodiff/DuneMatrix.hpp>
|
||||
|
||||
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
|
||||
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/Exceptions.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
||||
|
||||
|
||||
#include <opm/core/utility/platform_dependent/disable_warnings.h>
|
||||
|
||||
// #include <dune/istl/bcrsmatrix.hh>
|
||||
@ -62,39 +65,6 @@ namespace Opm
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
|
||||
|
||||
namespace {
|
||||
/// Eliminate a variable via Schur complement.
|
||||
/// \param[in] eqs set of equations with Jacobians
|
||||
/// \param[in] n index of equation/variable to eliminate.
|
||||
/// \return new set of equations, one smaller than eqs.
|
||||
/// Note: this method requires the eliminated variable to have the same size
|
||||
/// as the equation in the corresponding position (that also will be eliminated).
|
||||
/// It also required the jacobian block n of equation n to be diagonal.
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n);
|
||||
|
||||
/// Recover that value of a variable previously eliminated.
|
||||
/// \param[in] equation previously eliminated equation.
|
||||
/// \param[in] partial_solution solution to the remainder system after elimination.
|
||||
/// \param[in] n index of equation/variable that was eliminated.
|
||||
/// \return solution to complete system.
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n);
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b);
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -114,6 +84,8 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Solve the linear system Ax = b, with A being the
|
||||
/// combined derivative matrix of the residual and b
|
||||
/// being the residual itself.
|
||||
@ -229,6 +201,10 @@ namespace Opm
|
||||
return dx;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const boost::any& NewtonIterationBlackoilCPR::parallelInformation() const
|
||||
{
|
||||
return parallelInformation_;
|
||||
@ -236,242 +212,6 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
||||
{
|
||||
// Check that the variable index to eliminate is within bounds.
|
||||
const int num_eq = eqs.size();
|
||||
const int num_vars = eqs[0].derivative().size();
|
||||
if (num_eq != num_vars) {
|
||||
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
||||
}
|
||||
if (n >= num_eq) {
|
||||
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
||||
}
|
||||
|
||||
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
||||
// This is applied to all 2x2 block submatrices
|
||||
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
|
||||
// We do not explicitly compute inv(D) instead Du = C is solved
|
||||
|
||||
// Extract the submatrix
|
||||
const std::vector<M>& Jn = eqs[n].derivative();
|
||||
|
||||
// Use sparse LU to solve the block submatrices i.e compute inv(D)
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(Jn[n]);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(Jn[n]);
|
||||
#endif
|
||||
M id(Jn[n].rows(), Jn[n].cols());
|
||||
id.setIdentity();
|
||||
const Eigen::SparseMatrix<M::Scalar, Eigen::ColMajor> Di = solver.solve(id);
|
||||
|
||||
// compute inv(D)*bn for the update of the right hand side
|
||||
const Eigen::VectorXd& Dibn = solver.solve(eqs[n].value().matrix());
|
||||
|
||||
std::vector<V> vals(num_eq); // Number n will remain empty.
|
||||
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
jacs[eq].reserve(num_eq - 1);
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
// Update right hand side.
|
||||
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
|
||||
}
|
||||
for (int var = 0; var < num_eq; ++var) {
|
||||
if (var == n) {
|
||||
continue;
|
||||
}
|
||||
// solve Du = C
|
||||
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
|
||||
M u;
|
||||
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
|
||||
// Create new jacobians.
|
||||
// Add A
|
||||
jacs[eq].push_back(Je[var]);
|
||||
M& J = jacs[eq].back();
|
||||
// Subtract Bu (B*inv(D)*C)
|
||||
M Bu;
|
||||
fastSparseProduct(B, u, Bu);
|
||||
J -= Bu;
|
||||
}
|
||||
}
|
||||
|
||||
// Create return value.
|
||||
std::vector<ADB> retval;
|
||||
retval.reserve(num_eq - 1);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq])));
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
||||
{
|
||||
// The equation to solve for the unknown y (to be recovered) is
|
||||
// Cx + Dy = b
|
||||
// Dy = (b - Cx)
|
||||
// where D is the eliminated block, C is the jacobian of
|
||||
// the eliminated equation with respect to the
|
||||
// non-eliminated unknowms, b is the right-hand side of
|
||||
// the eliminated equation, and x is the partial solution
|
||||
// of the non-eliminated unknowns.
|
||||
|
||||
const M& D = equation.derivative()[n];
|
||||
// Build C.
|
||||
std::vector<M> C_jacs = equation.derivative();
|
||||
C_jacs.erase(C_jacs.begin() + n);
|
||||
V equation_value = equation.value();
|
||||
ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs)));
|
||||
const M& C = eq_coll.derivative()[0];
|
||||
|
||||
// Use sparse LU to solve the block submatrices
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(D);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(D);
|
||||
#endif
|
||||
|
||||
// Compute value of eliminated variable.
|
||||
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
|
||||
const Eigen::VectorXd elim_var = solver.solve(b);
|
||||
|
||||
// Find the relevant sizes to use when reconstructing the full solution.
|
||||
const int nelim = equation.size();
|
||||
const int npart = partial_solution.size();
|
||||
assert(C.cols() == npart);
|
||||
const int full_size = nelim + npart;
|
||||
int start = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
start += equation.derivative()[i].cols();
|
||||
}
|
||||
assert(start < full_size);
|
||||
|
||||
// Reconstruct complete solution vector.
|
||||
V sol(full_size);
|
||||
std::copy_n(partial_solution.data(), start, sol.data());
|
||||
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
||||
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs_in,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
// M& A,
|
||||
V& b)
|
||||
{
|
||||
if (num_phases != 3) {
|
||||
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
|
||||
}
|
||||
|
||||
// A concession to MRST, to obtain more similar behaviour:
|
||||
// swap the first two equations, so that oil is first, then water.
|
||||
auto eqs = eqs_in;
|
||||
eqs[0].swap(eqs[1]);
|
||||
|
||||
// Characterize the material balance equations.
|
||||
const int n = eqs[0].size();
|
||||
const double ratio_limit = 0.01;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
||||
// The l1 block indicates if the equation for a given cell and phase is
|
||||
// sufficiently strong on the diagonal.
|
||||
Block l1 = Block::Zero(n, num_phases);
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
const M& J = eqs[phase].derivative()[0];
|
||||
V dj = J.diagonal().cwiseAbs();
|
||||
V sod = V::Zero(n);
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
||||
}
|
||||
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
||||
}
|
||||
|
||||
// By default, replace first equation with sum of all phase equations.
|
||||
// Build helper vectors.
|
||||
V l21 = V::Zero(n);
|
||||
V l22 = V::Ones(n);
|
||||
V l31 = V::Zero(n);
|
||||
V l33 = V::Ones(n);
|
||||
|
||||
// If the first phase diagonal is not strong enough, we need further treatment.
|
||||
// Then the first equation will be the sum of the remaining equations,
|
||||
// and we swap the first equation into one of their slots.
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
if (!l1(elem, 0)) {
|
||||
const double l12x = l1(elem, 1);
|
||||
const double l13x = l1(elem, 2);
|
||||
const bool allzero = (l12x + l13x == 0);
|
||||
if (allzero) {
|
||||
l1(elem, 0) = 1;
|
||||
} else {
|
||||
if (l12x >= l13x) {
|
||||
l21(elem) = 1;
|
||||
l22(elem) = 0;
|
||||
} else {
|
||||
l31(elem) = 1;
|
||||
l33(elem) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the sparse matrix L that does the swaps and sums.
|
||||
Span i1(n, 1, 0);
|
||||
Span i2(n, 1, n);
|
||||
Span i3(n, 1, 2*n);
|
||||
std::vector< Eigen::Triplet<double> > t;
|
||||
t.reserve(7*n);
|
||||
for (int ii = 0; ii < n; ++ii) {
|
||||
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
||||
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
||||
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
||||
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
||||
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
||||
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
||||
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
||||
}
|
||||
M L(3*n, 3*n);
|
||||
L.setFromTriplets(t.begin(), t.end());
|
||||
|
||||
// Combine in single block.
|
||||
ADB total_residual = vertcatCollapseJacs(eqs);
|
||||
|
||||
// Create output as product of L with equations.
|
||||
A = L * total_residual.derivative()[0];
|
||||
b = L * total_residual.value().matrix();
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -44,6 +44,7 @@
|
||||
#include <opm/autodiff/DuneMatrix.hpp>
|
||||
|
||||
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
|
||||
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/Exceptions.hpp>
|
||||
@ -70,16 +71,6 @@
|
||||
#include <Eigen/SparseLU>
|
||||
#endif
|
||||
|
||||
// namespace Dune
|
||||
// {
|
||||
// typedef Dune::FieldMatrix<double, 1, 1> MatrixBlockType;
|
||||
// typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
|
||||
// template <>
|
||||
// struct MatrixDimension<Opm::DuneMatrix> : public MatrixDimension<Mat>
|
||||
// {
|
||||
// };
|
||||
// }
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -88,41 +79,6 @@ namespace Opm
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
// typedef Dune::FieldMatrix<double, 1, 1> MatrixBlockType;
|
||||
// typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
|
||||
|
||||
namespace {
|
||||
/// Eliminate a variable via Schur complement.
|
||||
/// \param[in] eqs set of equations with Jacobians
|
||||
/// \param[in] n index of equation/variable to eliminate.
|
||||
/// \return new set of equations, one smaller than eqs.
|
||||
/// Note: this method requires the eliminated variable to have the same size
|
||||
/// as the equation in the corresponding position (that also will be eliminated).
|
||||
/// It also required the jacobian block n of equation n to be diagonal.
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n);
|
||||
|
||||
/// Recover that value of a variable previously eliminated.
|
||||
/// \param[in] equation previously eliminated equation.
|
||||
/// \param[in] partial_solution solution to the remainder system after elimination.
|
||||
/// \param[in] n index of equation/variable that was eliminated.
|
||||
/// \return solution to complete system.
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n);
|
||||
|
||||
/// Form an interleaved system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formInterleavedSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b);
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
|
||||
@ -143,6 +99,8 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Solve the linear system Ax = b, with A being the
|
||||
/// combined derivative matrix of the residual and b
|
||||
/// being the residual itself.
|
||||
@ -194,9 +152,9 @@ namespace Opm
|
||||
// Form modified system.
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
|
||||
V b;
|
||||
formInterleavedSystem(np, eqs, A, b);
|
||||
formEllipticSystem(np, eqs, A, b);
|
||||
|
||||
// Create ISTL matrix.
|
||||
// Create ISTL matrix with interleaved rows and columns (block structured).
|
||||
assert(np == 3);
|
||||
Mat istlA(s.rows(), s.cols(), s.nonZeros(), Mat::row_wise);
|
||||
const int* ia = s.outerIndexPtr();
|
||||
@ -224,22 +182,9 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// // Scale pressure equation.
|
||||
// const double pscale = 200*unit::barsa;
|
||||
// const int nc = residual.material_balance_eq[0].size();
|
||||
// A.topRows(nc) *= pscale;
|
||||
// b.topRows(nc) *= pscale;
|
||||
|
||||
// Solve reduced system.
|
||||
SolutionVector dx(SolutionVector::Zero(b.size()));
|
||||
|
||||
// Create ISTL matrix.
|
||||
// DuneMatrix istlA( A );
|
||||
|
||||
// Create ISTL matrix for elliptic part.
|
||||
// DuneMatrix istlAe( A.topLeftCorner(nc, nc) );
|
||||
|
||||
// Right hand side.
|
||||
Vector istlb(istlA.N());
|
||||
for (int i = 0; i < size; ++i) {
|
||||
@ -274,8 +219,7 @@ namespace Opm
|
||||
dx(2*size + i) = x[i][2];
|
||||
}
|
||||
|
||||
if( hasWells )
|
||||
{
|
||||
if ( hasWells ) {
|
||||
// Compute full solution using the eliminated equations.
|
||||
// Recovery in inverse order of elimination.
|
||||
dx = recoverVariable(elim_eqs[1], dx, np);
|
||||
@ -284,6 +228,10 @@ namespace Opm
|
||||
return dx;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
|
||||
{
|
||||
return parallelInformation_;
|
||||
@ -291,246 +239,6 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
||||
{
|
||||
// Check that the variable index to eliminate is within bounds.
|
||||
const int num_eq = eqs.size();
|
||||
const int num_vars = eqs[0].derivative().size();
|
||||
if (num_eq != num_vars) {
|
||||
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
||||
}
|
||||
if (n >= num_eq) {
|
||||
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
||||
}
|
||||
|
||||
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
||||
// This is applied to all 2x2 block submatrices
|
||||
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
|
||||
// We do not explicitly compute inv(D) instead Du = C is solved
|
||||
|
||||
// Extract the submatrix
|
||||
const std::vector<M>& Jn = eqs[n].derivative();
|
||||
|
||||
// Use sparse LU to solve the block submatrices i.e compute inv(D)
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(Jn[n]);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(Jn[n]);
|
||||
#endif
|
||||
M id(Jn[n].rows(), Jn[n].cols());
|
||||
id.setIdentity();
|
||||
const Eigen::SparseMatrix<M::Scalar, Eigen::ColMajor> Di = solver.solve(id);
|
||||
|
||||
// compute inv(D)*bn for the update of the right hand side
|
||||
const Eigen::VectorXd& Dibn = solver.solve(eqs[n].value().matrix());
|
||||
|
||||
std::vector<V> vals(num_eq); // Number n will remain empty.
|
||||
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
jacs[eq].reserve(num_eq - 1);
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
// Update right hand side.
|
||||
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
|
||||
}
|
||||
for (int var = 0; var < num_eq; ++var) {
|
||||
if (var == n) {
|
||||
continue;
|
||||
}
|
||||
// solve Du = C
|
||||
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
|
||||
M u;
|
||||
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
|
||||
// Create new jacobians.
|
||||
// Add A
|
||||
jacs[eq].push_back(Je[var]);
|
||||
M& J = jacs[eq].back();
|
||||
// Subtract Bu (B*inv(D)*C)
|
||||
M Bu;
|
||||
fastSparseProduct(B, u, Bu);
|
||||
J -= Bu;
|
||||
}
|
||||
}
|
||||
|
||||
// Create return value.
|
||||
std::vector<ADB> retval;
|
||||
retval.reserve(num_eq - 1);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq])));
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
||||
{
|
||||
// The equation to solve for the unknown y (to be recovered) is
|
||||
// Cx + Dy = b
|
||||
// Dy = (b - Cx)
|
||||
// where D is the eliminated block, C is the jacobian of
|
||||
// the eliminated equation with respect to the
|
||||
// non-eliminated unknowms, b is the right-hand side of
|
||||
// the eliminated equation, and x is the partial solution
|
||||
// of the non-eliminated unknowns.
|
||||
|
||||
const M& D = equation.derivative()[n];
|
||||
// Build C.
|
||||
std::vector<M> C_jacs = equation.derivative();
|
||||
C_jacs.erase(C_jacs.begin() + n);
|
||||
V equation_value = equation.value();
|
||||
ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs)));
|
||||
const M& C = eq_coll.derivative()[0];
|
||||
|
||||
// Use sparse LU to solve the block submatrices
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(D);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(D);
|
||||
#endif
|
||||
|
||||
// Compute value of eliminated variable.
|
||||
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
|
||||
const Eigen::VectorXd elim_var = solver.solve(b);
|
||||
|
||||
// Find the relevant sizes to use when reconstructing the full solution.
|
||||
const int nelim = equation.size();
|
||||
const int npart = partial_solution.size();
|
||||
assert(C.cols() == npart);
|
||||
const int full_size = nelim + npart;
|
||||
int start = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
start += equation.derivative()[i].cols();
|
||||
}
|
||||
assert(start < full_size);
|
||||
|
||||
// Reconstruct complete solution vector.
|
||||
V sol(full_size);
|
||||
std::copy_n(partial_solution.data(), start, sol.data());
|
||||
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
||||
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Form an interleaved system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formInterleavedSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs_in,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b)
|
||||
{
|
||||
if (num_phases != 3) {
|
||||
OPM_THROW(std::logic_error, "formInterleavedSystem() requires 3 phases.");
|
||||
}
|
||||
|
||||
#if 1
|
||||
// A concession to MRST, to obtain more similar behaviour:
|
||||
// swap the first two equations, so that oil is first, then water.
|
||||
auto eqs = eqs_in;
|
||||
eqs[0].swap(eqs[1]);
|
||||
// Characterize the material balance equations.
|
||||
const int n = eqs[0].size();
|
||||
const double ratio_limit = 0.01;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
||||
// The l1 block indicates if the equation for a given cell and phase is
|
||||
// sufficiently strong on the diagonal.
|
||||
Block l1 = Block::Zero(n, num_phases);
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
const M& J = eqs[phase].derivative()[0];
|
||||
V dj = J.diagonal().cwiseAbs();
|
||||
V sod = V::Zero(n);
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
||||
}
|
||||
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
||||
}
|
||||
|
||||
// By default, replace first equation with sum of all phase equations.
|
||||
// Build helper vectors.
|
||||
V l21 = V::Zero(n);
|
||||
V l22 = V::Ones(n);
|
||||
V l31 = V::Zero(n);
|
||||
V l33 = V::Ones(n);
|
||||
|
||||
// If the first phase diagonal is not strong enough, we need further treatment.
|
||||
// Then the first equation will be the sum of the remaining equations,
|
||||
// and we swap the first equation into one of their slots.
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
if (!l1(elem, 0)) {
|
||||
const double l12x = l1(elem, 1);
|
||||
const double l13x = l1(elem, 2);
|
||||
const bool allzero = (l12x + l13x == 0);
|
||||
if (allzero) {
|
||||
l1(elem, 0) = 1;
|
||||
} else {
|
||||
if (l12x >= l13x) {
|
||||
l21(elem) = 1;
|
||||
l22(elem) = 0;
|
||||
} else {
|
||||
l31(elem) = 1;
|
||||
l33(elem) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the sparse matrix L that does the swaps and sums.
|
||||
Span i1(n, 1, 0);
|
||||
Span i2(n, 1, n);
|
||||
Span i3(n, 1, 2*n);
|
||||
std::vector< Eigen::Triplet<double> > t;
|
||||
t.reserve(7*n);
|
||||
for (int ii = 0; ii < n; ++ii) {
|
||||
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
||||
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
||||
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
||||
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
||||
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
||||
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
||||
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
||||
}
|
||||
M L(3*n, 3*n);
|
||||
L.setFromTriplets(t.begin(), t.end());
|
||||
|
||||
// Combine in single block.
|
||||
ADB total_residual = vertcatCollapseJacs(eqs);
|
||||
|
||||
// Create output as product of L with equations.
|
||||
A = L * total_residual.derivative()[0];
|
||||
b = L * total_residual.value().matrix();
|
||||
#else
|
||||
ADB total_residual = vertcatCollapseJacs(eqs_in);
|
||||
A = total_residual.derivative()[0];
|
||||
b = total_residual.value().matrix();
|
||||
#endif
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user