mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Move functions needed by several NewtonIteration-classes to separate file.
This commit is contained in:
parent
d86de7bb79
commit
c8cae85ea2
@ -29,8 +29,9 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/BlackoilPropsAdInterface.cpp
|
||||
opm/autodiff/ExtractParallelGridInformationToISTL.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilCPR.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilInterleaved.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.cpp
|
||||
opm/autodiff/NewtonIterationUtilities.cpp
|
||||
opm/autodiff/GridHelpers.cpp
|
||||
opm/autodiff/ImpesTPFAAD.cpp
|
||||
opm/autodiff/SimulatorFullyImplicitBlackoilOutput.cpp
|
||||
@ -114,6 +115,7 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/NewtonIterationBlackoilInterface.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilInterleaved.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.hpp
|
||||
opm/autodiff/NewtonIterationUtilities.hpp
|
||||
opm/autodiff/NewtonSolver.hpp
|
||||
opm/autodiff/NewtonSolver_impl.hpp
|
||||
opm/autodiff/LinearisedBlackoilResidual.hpp
|
||||
|
275
opm/autodiff/NewtonIterationUtilities.cpp
Normal file
275
opm/autodiff/NewtonIterationUtilities.cpp
Normal file
@ -0,0 +1,275 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2014 IRIS AS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#if HAVE_UMFPACK
|
||||
#include <Eigen/UmfPackSupport>
|
||||
#else
|
||||
#include <Eigen/SparseLU>
|
||||
#endif
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
||||
{
|
||||
// Check that the variable index to eliminate is within bounds.
|
||||
const int num_eq = eqs.size();
|
||||
const int num_vars = eqs[0].derivative().size();
|
||||
if (num_eq != num_vars) {
|
||||
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
||||
}
|
||||
if (n >= num_eq) {
|
||||
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
||||
}
|
||||
|
||||
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
||||
// This is applied to all 2x2 block submatrices
|
||||
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
|
||||
// We do not explicitly compute inv(D) instead Du = C is solved
|
||||
|
||||
// Extract the submatrix
|
||||
const std::vector<M>& Jn = eqs[n].derivative();
|
||||
|
||||
// Use sparse LU to solve the block submatrices i.e compute inv(D)
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(Jn[n]);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(Jn[n]);
|
||||
#endif
|
||||
M id(Jn[n].rows(), Jn[n].cols());
|
||||
id.setIdentity();
|
||||
const Eigen::SparseMatrix<M::Scalar, Eigen::ColMajor> Di = solver.solve(id);
|
||||
|
||||
// compute inv(D)*bn for the update of the right hand side
|
||||
const Eigen::VectorXd& Dibn = solver.solve(eqs[n].value().matrix());
|
||||
|
||||
std::vector<V> vals(num_eq); // Number n will remain empty.
|
||||
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
jacs[eq].reserve(num_eq - 1);
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
// Update right hand side.
|
||||
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
|
||||
}
|
||||
for (int var = 0; var < num_eq; ++var) {
|
||||
if (var == n) {
|
||||
continue;
|
||||
}
|
||||
// solve Du = C
|
||||
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
|
||||
M u;
|
||||
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
const std::vector<M>& Je = eqs[eq].derivative();
|
||||
const M& B = Je[n];
|
||||
|
||||
// Create new jacobians.
|
||||
// Add A
|
||||
jacs[eq].push_back(Je[var]);
|
||||
M& J = jacs[eq].back();
|
||||
// Subtract Bu (B*inv(D)*C)
|
||||
M Bu;
|
||||
fastSparseProduct(B, u, Bu);
|
||||
J -= Bu;
|
||||
}
|
||||
}
|
||||
|
||||
// Create return value.
|
||||
std::vector<ADB> retval;
|
||||
retval.reserve(num_eq - 1);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq])));
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
||||
{
|
||||
// The equation to solve for the unknown y (to be recovered) is
|
||||
// Cx + Dy = b
|
||||
// Dy = (b - Cx)
|
||||
// where D is the eliminated block, C is the jacobian of
|
||||
// the eliminated equation with respect to the
|
||||
// non-eliminated unknowms, b is the right-hand side of
|
||||
// the eliminated equation, and x is the partial solution
|
||||
// of the non-eliminated unknowns.
|
||||
|
||||
const M& D = equation.derivative()[n];
|
||||
// Build C.
|
||||
std::vector<M> C_jacs = equation.derivative();
|
||||
C_jacs.erase(C_jacs.begin() + n);
|
||||
V equation_value = equation.value();
|
||||
ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs)));
|
||||
const M& C = eq_coll.derivative()[0];
|
||||
|
||||
// Use sparse LU to solve the block submatrices
|
||||
#if HAVE_UMFPACK
|
||||
const Eigen::UmfPackLU< M > solver(D);
|
||||
#else
|
||||
const Eigen::SparseLU< M > solver(D);
|
||||
#endif
|
||||
|
||||
// Compute value of eliminated variable.
|
||||
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
|
||||
const Eigen::VectorXd elim_var = solver.solve(b);
|
||||
|
||||
// Find the relevant sizes to use when reconstructing the full solution.
|
||||
const int nelim = equation.size();
|
||||
const int npart = partial_solution.size();
|
||||
assert(C.cols() == npart);
|
||||
const int full_size = nelim + npart;
|
||||
int start = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
start += equation.derivative()[i].cols();
|
||||
}
|
||||
assert(start < full_size);
|
||||
|
||||
// Reconstruct complete solution vector.
|
||||
V sol(full_size);
|
||||
std::copy_n(partial_solution.data(), start, sol.data());
|
||||
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
||||
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs_in,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b)
|
||||
{
|
||||
if (num_phases != 3) {
|
||||
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
|
||||
}
|
||||
|
||||
// A concession to MRST, to obtain more similar behaviour:
|
||||
// swap the first two equations, so that oil is first, then water.
|
||||
auto eqs = eqs_in;
|
||||
eqs[0].swap(eqs[1]);
|
||||
|
||||
// Characterize the material balance equations.
|
||||
const int n = eqs[0].size();
|
||||
const double ratio_limit = 0.01;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
||||
// The l1 block indicates if the equation for a given cell and phase is
|
||||
// sufficiently strong on the diagonal.
|
||||
Block l1 = Block::Zero(n, num_phases);
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
const M& J = eqs[phase].derivative()[0];
|
||||
V dj = J.diagonal().cwiseAbs();
|
||||
V sod = V::Zero(n);
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
||||
}
|
||||
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
||||
}
|
||||
|
||||
// By default, replace first equation with sum of all phase equations.
|
||||
// Build helper vectors.
|
||||
V l21 = V::Zero(n);
|
||||
V l22 = V::Ones(n);
|
||||
V l31 = V::Zero(n);
|
||||
V l33 = V::Ones(n);
|
||||
|
||||
// If the first phase diagonal is not strong enough, we need further treatment.
|
||||
// Then the first equation will be the sum of the remaining equations,
|
||||
// and we swap the first equation into one of their slots.
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
if (!l1(elem, 0)) {
|
||||
const double l12x = l1(elem, 1);
|
||||
const double l13x = l1(elem, 2);
|
||||
const bool allzero = (l12x + l13x == 0);
|
||||
if (allzero) {
|
||||
l1(elem, 0) = 1;
|
||||
} else {
|
||||
if (l12x >= l13x) {
|
||||
l21(elem) = 1;
|
||||
l22(elem) = 0;
|
||||
} else {
|
||||
l31(elem) = 1;
|
||||
l33(elem) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the sparse matrix L that does the swaps and sums.
|
||||
Span i1(n, 1, 0);
|
||||
Span i2(n, 1, n);
|
||||
Span i3(n, 1, 2*n);
|
||||
std::vector< Eigen::Triplet<double> > t;
|
||||
t.reserve(7*n);
|
||||
for (int ii = 0; ii < n; ++ii) {
|
||||
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
||||
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
||||
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
||||
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
||||
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
||||
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
||||
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
||||
}
|
||||
M L(3*n, 3*n);
|
||||
L.setFromTriplets(t.begin(), t.end());
|
||||
|
||||
// Combine in single block.
|
||||
ADB total_residual = vertcatCollapseJacs(eqs);
|
||||
|
||||
// Create output as product of L with equations.
|
||||
A = L * total_residual.derivative()[0];
|
||||
b = L * total_residual.value().matrix();
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
64
opm/autodiff/NewtonIterationUtilities.hpp
Normal file
64
opm/autodiff/NewtonIterationUtilities.hpp
Normal file
@ -0,0 +1,64 @@
|
||||
/*
|
||||
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_NEWTONITERATIONUTILITIES_HEADER_INCLUDED
|
||||
#define OPM_NEWTONITERATIONUTILITIES_HEADER_INCLUDED
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Eliminate a variable via Schur complement.
|
||||
/// \param[in] eqs set of equations with Jacobians
|
||||
/// \param[in] n index of equation/variable to eliminate.
|
||||
/// \return new set of equations, one smaller than eqs.
|
||||
/// Note: this method requires the eliminated variable to have the same size
|
||||
/// as the equation in the corresponding position (that also will be eliminated).
|
||||
std::vector< AutoDiffBlock<double> >
|
||||
eliminateVariable(const std::vector< AutoDiffBlock<double> >& eqs,
|
||||
const int n);
|
||||
|
||||
/// Recover that value of a variable previously eliminated.
|
||||
/// \param[in] equation previously eliminated equation.
|
||||
/// \param[in] partial_solution solution to the remainder system after elimination.
|
||||
/// \param[in] n index of equation/variable that was eliminated.
|
||||
/// \return solution to complete system.
|
||||
AutoDiffBlock<double>::V recoverVariable(const AutoDiffBlock<double>& equation,
|
||||
const AutoDiffBlock<double>::V& partial_solution,
|
||||
const int n);
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector< AutoDiffBlock<double> >& eqs,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
AutoDiffBlock<double>::V& b);
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_NEWTONITERATIONUTILITIES_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user