mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Use explicit instantiation for FlexibleSolver to reduce compile times.
This commit is contained in:
@@ -28,6 +28,7 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/simulators/timestepping/SimulatorReport.cpp
|
||||
opm/simulators/flow/MissingFeatures.cpp
|
||||
opm/simulators/linalg/ExtractParallelGridInformationToISTL.cpp
|
||||
opm/simulators/linalg/FlexibleSolver.cpp
|
||||
opm/simulators/timestepping/TimeStepControl.cpp
|
||||
opm/simulators/timestepping/AdaptiveSimulatorTimer.cpp
|
||||
opm/simulators/timestepping/SimulatorTimer.cpp
|
||||
|
||||
247
opm/simulators/linalg/FlexibleSolver.cpp
Normal file
247
opm/simulators/linalg/FlexibleSolver.cpp
Normal file
@@ -0,0 +1,247 @@
|
||||
/*
|
||||
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
|
||||
#include <opm/simulators/linalg/FlexibleSolver.hpp>
|
||||
#include <opm/simulators/linalg/matrixblock.hh>
|
||||
|
||||
#include <dune/common/fmatrix.hh>
|
||||
#include <dune/istl/bcrsmatrix.hh>
|
||||
#include <dune/istl/solvers.hh>
|
||||
#include <dune/istl/umfpack.hh>
|
||||
#include <dune/istl/owneroverlapcopy.hh>
|
||||
#include <dune/istl/paamg/pinfo.hh>
|
||||
|
||||
#include <boost/property_tree/ptree.hpp>
|
||||
|
||||
namespace Dune
|
||||
{
|
||||
/// Create a sequential solver.
|
||||
template <class MatrixType, class VectorType>
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorType()>& weightsCalculator)
|
||||
{
|
||||
init(prm, matrix, weightsCalculator, Dune::Amg::SequentialInformation());
|
||||
}
|
||||
|
||||
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
|
||||
template <class MatrixType, class VectorType>
|
||||
template <class Comm>
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
// const Comm& comm)
|
||||
const typename std::enable_if<IsComm<Comm>::value, Comm>::type& comm)
|
||||
{
|
||||
init(prm, matrix, std::function<VectorType()>(), comm);
|
||||
}
|
||||
|
||||
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
|
||||
template <class MatrixType, class VectorType>
|
||||
template <class Comm>
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorType()>& weightsCalculator, const Comm& comm)
|
||||
{
|
||||
init(prm, matrix, weightsCalculator, comm);
|
||||
}
|
||||
|
||||
template <class MatrixType, class VectorType>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res)
|
||||
{
|
||||
linsolver_->apply(x, rhs, res);
|
||||
}
|
||||
|
||||
template <class MatrixType, class VectorType>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res)
|
||||
{
|
||||
linsolver_->apply(x, rhs, reduction, res);
|
||||
}
|
||||
|
||||
/// Access the contained preconditioner.
|
||||
template <class MatrixType, class VectorType>
|
||||
auto
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
preconditioner() -> AbstractPrecondType&
|
||||
{
|
||||
return *preconditioner_;
|
||||
}
|
||||
|
||||
template <class MatrixType, class VectorType>
|
||||
Dune::SolverCategory::Category
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
category() const
|
||||
{
|
||||
return linearoperator_->category();
|
||||
}
|
||||
|
||||
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
|
||||
template <class MatrixType, class VectorType>
|
||||
template <class Comm>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
|
||||
const std::function<VectorType()> weightsCalculator, const Comm& comm)
|
||||
{
|
||||
// Parallel case.
|
||||
using ParOperatorType = Dune::OverlappingSchwarzOperator<MatrixType, VectorType, VectorType, Comm>;
|
||||
using pt = const boost::property_tree::ptree;
|
||||
auto linop = std::make_shared<ParOperatorType>(matrix, comm);
|
||||
linearoperator_ = linop;
|
||||
auto child = prm.get_child_optional("preconditioner");
|
||||
preconditioner_
|
||||
= Opm::PreconditionerFactory<ParOperatorType, Comm>::create(*linop, child? *child : pt(),
|
||||
weightsCalculator, comm);
|
||||
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, linearoperator_->category());
|
||||
}
|
||||
|
||||
template <class MatrixType, class VectorType>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
|
||||
const std::function<VectorType()> weightsCalculator, const Dune::Amg::SequentialInformation&)
|
||||
{
|
||||
// Sequential case.
|
||||
using SeqOperatorType = Dune::MatrixAdapter<MatrixType, VectorType, VectorType>;
|
||||
using pt = const boost::property_tree::ptree;
|
||||
auto linop = std::make_shared<SeqOperatorType>(matrix);
|
||||
linearoperator_ = linop;
|
||||
auto child = prm.get_child_optional("preconditioner");
|
||||
preconditioner_ = Opm::PreconditionerFactory<SeqOperatorType>::create(*linop, child? *child : pt(),
|
||||
weightsCalculator);
|
||||
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
|
||||
}
|
||||
|
||||
template <class MatrixType, class VectorType>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
initSolver(const boost::property_tree::ptree& prm, bool isMaster)
|
||||
{
|
||||
const double tol = prm.get<double>("tol", 1e-2);
|
||||
const int maxiter = prm.get<int>("maxiter", 200);
|
||||
const int verbosity = isMaster? prm.get<int>("verbosity", 0) : 0;
|
||||
const std::string solver_type = prm.get<std::string>("solver", "bicgstab");
|
||||
if (solver_type == "bicgstab") {
|
||||
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
} else if (solver_type == "loopsolver") {
|
||||
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
} else if (solver_type == "gmres") {
|
||||
int restart = prm.get<int>("restart", 15);
|
||||
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol,
|
||||
restart, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
#if HAVE_SUITESPARSE_UMFPACK
|
||||
} else if (solver_type == "umfpack") {
|
||||
bool dummy = false;
|
||||
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_->getmat(), verbosity, dummy));
|
||||
#endif
|
||||
} else {
|
||||
OPM_THROW(std::invalid_argument, "Properties: Solver " << solver_type << " not known.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Main initialization routine.
|
||||
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
|
||||
template <class MatrixType, class VectorType>
|
||||
template <class Comm>
|
||||
void
|
||||
FlexibleSolver<MatrixType, VectorType>::
|
||||
init(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorType()> weightsCalculator, const Comm& comm)
|
||||
{
|
||||
initOpPrecSp(matrix, prm, weightsCalculator, comm);
|
||||
initSolver(prm, comm.communicator().rank()==0);
|
||||
}
|
||||
|
||||
} // namespace Dune
|
||||
|
||||
|
||||
// Explicit instantiations of FlexibleSolver
|
||||
|
||||
template <int N>
|
||||
using BV = Dune::BlockVector<Dune::FieldVector<double, N>>;
|
||||
template <int N>
|
||||
using BM = Dune::BCRSMatrix<Dune::FieldMatrix<double, N, N>>;
|
||||
template <int N>
|
||||
using OBM = Dune::BCRSMatrix<Opm::MatrixBlock<double, N, N>>;
|
||||
|
||||
// Variants using Dune::FieldMatrix blocks.
|
||||
// template class Dune::FlexibleSolver<BM<1>, BV<1>>;
|
||||
// template class Dune::FlexibleSolver<BM<2>, BV<2>>;
|
||||
template class Dune::FlexibleSolver<BM<3>, BV<3>>;
|
||||
// template class Dune::FlexibleSolver<BM<4>, BV<4>>;
|
||||
/*
|
||||
// Variants using Opm::MatrixBlock blocks.
|
||||
template class Dune::FlexibleSolver<OBM<1>, BV<1>>;
|
||||
template class Dune::FlexibleSolver<OBM<2>, BV<2>>;
|
||||
template class Dune::FlexibleSolver<OBM<3>, BV<3>>;
|
||||
template class Dune::FlexibleSolver<OBM<4>, BV<4>>;
|
||||
|
||||
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
|
||||
|
||||
template Dune::FlexibleSolver<OBM<1>, BV<1>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const OBM<1>& matrix,
|
||||
const Comm&);
|
||||
template Dune::FlexibleSolver<OBM<1>, BV<1>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
const std::function<BV<1>()>& weightsCalculator,
|
||||
const Comm& comm);
|
||||
template Dune::FlexibleSolver<OBM<2>, BV<2>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const OBM<2>& matrix,
|
||||
const Comm&);
|
||||
template Dune::FlexibleSolver<OBM<2>, BV<2>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
const std::function<BV<2>()>& weightsCalculator,
|
||||
const Comm& comm);
|
||||
template Dune::FlexibleSolver<OBM<3>, BV<3>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const OBM<3>& matrix,
|
||||
const Comm&);
|
||||
template Dune::FlexibleSolver<OBM<3>, BV<3>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
const std::function<BV<3>()>& weightsCalculator,
|
||||
const Comm& comm);
|
||||
template Dune::FlexibleSolver<OBM<4>, BV<4>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const OBM<4>& matrix,
|
||||
const Comm&);
|
||||
template Dune::FlexibleSolver<OBM<4>, BV<4>>::FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
const std::function<BV<4>()>& weightsCalculator,
|
||||
const Comm& comm);
|
||||
*/
|
||||
@@ -61,51 +61,31 @@ public:
|
||||
|
||||
/// Create a sequential solver.
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorTypeT()>& weightsCalculator = std::function<VectorTypeT()>())
|
||||
{
|
||||
init(prm, matrix, weightsCalculator, Dune::Amg::SequentialInformation());
|
||||
}
|
||||
const std::function<VectorTypeT()>& weightsCalculator = std::function<VectorTypeT()>());
|
||||
|
||||
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
|
||||
template <class Comm>
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm,
|
||||
const MatrixType& matrix,
|
||||
const typename std::enable_if<IsComm<Comm>::value, Comm>::type& comm)
|
||||
{
|
||||
init(prm, matrix, std::function<VectorTypeT()>(), comm);
|
||||
}
|
||||
// const Comm& comm);
|
||||
const typename std::enable_if<IsComm<Comm>::value, Comm>::type& comm);
|
||||
|
||||
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
|
||||
template <class Comm>
|
||||
FlexibleSolver(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorTypeT()>& weightsCalculator, const Comm& comm)
|
||||
{
|
||||
init(prm, matrix, weightsCalculator, comm);
|
||||
}
|
||||
const std::function<VectorTypeT()>& weightsCalculator, const Comm& comm);
|
||||
|
||||
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override
|
||||
{
|
||||
linsolver_->apply(x, rhs, res);
|
||||
}
|
||||
virtual void apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res) override;
|
||||
|
||||
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override
|
||||
{
|
||||
linsolver_->apply(x, rhs, reduction, res);
|
||||
}
|
||||
virtual void apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res) override;
|
||||
|
||||
/// Type of the contained preconditioner.
|
||||
using AbstractPrecondType = Dune::PreconditionerWithUpdate<VectorType, VectorType>;
|
||||
|
||||
/// Access the contained preconditioner.
|
||||
AbstractPrecondType& preconditioner()
|
||||
{
|
||||
return *preconditioner_;
|
||||
}
|
||||
AbstractPrecondType& preconditioner();
|
||||
|
||||
virtual Dune::SolverCategory::Category category() const override
|
||||
{
|
||||
return linearoperator_->category();
|
||||
}
|
||||
virtual Dune::SolverCategory::Category category() const override;
|
||||
|
||||
private:
|
||||
using AbstractOperatorType = Dune::AssembledLinearOperator<MatrixType, VectorType, VectorType>;
|
||||
@@ -115,83 +95,18 @@ private:
|
||||
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
|
||||
template <class Comm>
|
||||
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm)
|
||||
{
|
||||
// Parallel case.
|
||||
using ParOperatorType = Dune::OverlappingSchwarzOperator<MatrixType, VectorType, VectorType, Comm>;
|
||||
using pt = const boost::property_tree::ptree;
|
||||
auto linop = std::make_shared<ParOperatorType>(matrix, comm);
|
||||
linearoperator_ = linop;
|
||||
auto child = prm.get_child_optional("preconditioner");
|
||||
preconditioner_
|
||||
= Opm::PreconditionerFactory<ParOperatorType, Comm>::create(*linop, child? *child : pt(),
|
||||
weightsCalculator, comm);
|
||||
scalarproduct_ = Dune::createScalarProduct<VectorType, Comm>(comm, linearoperator_->category());
|
||||
}
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm);
|
||||
|
||||
void initOpPrecSp(const MatrixType& matrix, const boost::property_tree::ptree& prm,
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Dune::Amg::SequentialInformation&)
|
||||
{
|
||||
// Sequential case.
|
||||
using SeqOperatorType = Dune::MatrixAdapter<MatrixType, VectorType, VectorType>;
|
||||
using pt = const boost::property_tree::ptree;
|
||||
auto linop = std::make_shared<SeqOperatorType>(matrix);
|
||||
linearoperator_ = linop;
|
||||
auto child = prm.get_child_optional("preconditioner");
|
||||
preconditioner_ = Opm::PreconditionerFactory<SeqOperatorType>::create(*linop, child? *child : pt(),
|
||||
weightsCalculator);
|
||||
scalarproduct_ = std::make_shared<Dune::SeqScalarProduct<VectorType>>();
|
||||
}
|
||||
|
||||
void initSolver(const boost::property_tree::ptree& prm, bool isMaster)
|
||||
{
|
||||
const double tol = prm.get<double>("tol", 1e-2);
|
||||
const int maxiter = prm.get<int>("maxiter", 200);
|
||||
const int verbosity = isMaster? prm.get<int>("verbosity", 0) : 0;
|
||||
const std::string solver_type = prm.get<std::string>("solver", "bicgstab");
|
||||
if (solver_type == "bicgstab") {
|
||||
linsolver_.reset(new Dune::BiCGSTABSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
} else if (solver_type == "loopsolver") {
|
||||
linsolver_.reset(new Dune::LoopSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
} else if (solver_type == "gmres") {
|
||||
int restart = prm.get<int>("restart", 15);
|
||||
linsolver_.reset(new Dune::RestartedGMResSolver<VectorType>(*linearoperator_,
|
||||
*scalarproduct_,
|
||||
*preconditioner_,
|
||||
tol,
|
||||
restart, // desired residual reduction factor
|
||||
maxiter, // maximum number of iterations
|
||||
verbosity));
|
||||
#if HAVE_SUITESPARSE_UMFPACK
|
||||
} else if (solver_type == "umfpack") {
|
||||
bool dummy = false;
|
||||
linsolver_.reset(new Dune::UMFPack<MatrixType>(linearoperator_->getmat(), verbosity, dummy));
|
||||
#endif
|
||||
} else {
|
||||
OPM_THROW(std::invalid_argument, "Properties: Solver " << solver_type << " not known.");
|
||||
}
|
||||
}
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Dune::Amg::SequentialInformation&);
|
||||
|
||||
void initSolver(const boost::property_tree::ptree& prm, bool isMaster);
|
||||
|
||||
// Main initialization routine.
|
||||
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
|
||||
template <class Comm>
|
||||
void init(const boost::property_tree::ptree& prm, const MatrixType& matrix,
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm)
|
||||
{
|
||||
initOpPrecSp(matrix, prm, weightsCalculator, comm);
|
||||
initSolver(prm, comm.communicator().rank()==0);
|
||||
}
|
||||
const std::function<VectorTypeT()> weightsCalculator, const Comm& comm);
|
||||
|
||||
std::shared_ptr<AbstractOperatorType> linearoperator_;
|
||||
std::shared_ptr<AbstractPrecondType> preconditioner_;
|
||||
|
||||
Reference in New Issue
Block a user