Work in progress (still) on reordering solver.

This commit is contained in:
Atgeirr Flø Rasmussen 2016-07-06 22:38:41 +02:00
parent ad3e8b591b
commit ad6b5ec812

View File

@ -30,6 +30,60 @@
namespace Opm {
namespace detail
{
template <typename Scalar>
struct CreateVariable
{
Scalar operator()(double value, int index)
{
return Scalar::createVariable(value, index);
}
};
template <>
struct CreateVariable<double>
{
double operator()(double value, int)
{
return value;
}
};
template <typename Scalar>
struct CreateConstant
{
Scalar operator()(double value)
{
return Scalar::createConstant(value);
}
};
template <>
struct CreateConstant<double>
{
double operator()(double value)
{
return value;
}
};
} // namespace detail
/// A model implementation for the transport equation in three-phase black oil.
template<class Grid, class WellModel>
class BlackoilReorderingTransportModel
@ -72,9 +126,9 @@ namespace Opm {
const bool terminal_output)
: Base(param, grid, fluid, geo, rock_comp_props, std_wells, linsolver,
eclState, has_disgas, has_vapoil, terminal_output)
, reservoir_state0_(0, 0, 0)
, props_(dynamic_cast<const BlackoilPropsAdFromDeck&>(fluid)) // TODO: remove the need for this cast.
, well_state0_()
, state0_{ ReservoirState(0, 0, 0), WellState(), V() }
, state_{ ReservoirState(0, 0, 0), WellState(), V() }
{
// Set up the common parts of the mass balance equations
// for each active phase.
@ -95,13 +149,13 @@ namespace Opm {
{
Base::prepareStep(dt, reservoir_state, well_state);
Base::param_.solve_welleq_initially_ = false;
reservoir_state0_ = reservoir_state;
well_state0_ = well_state;
// Since pressure is constant, porosity and transmissibility multipliers can
state0_.reservoir_state = reservoir_state;
state0_.well_state = well_state;
// Since (reference) pressure is constant, porosity and transmissibility multipliers can
// be computed just once.
const std::vector<double>& p = reservoir_state.pressure();
Base::pvdt_ *= Base::poroMult(ADB::constant(Eigen::Map<const V>(p.data(), p.size()))).value();
tr_mult0_ = Base::transMult(ADB::constant(Eigen::Map<const V>(p.data(), p.size()))).value();
state0_.tr_mult = Base::transMult(ADB::constant(Eigen::Map<const V>(p.data(), p.size()))).value();
}
@ -115,13 +169,11 @@ namespace Opm {
ReservoirState& reservoir_state,
const WellState& well_state)
{
const std::vector<double>& p = reservoir_state.pressure();
tr_mult_ = Base::transMult(ADB::constant(Eigen::Map<const V>(p.data(), p.size()))).value();
// Extract reservoir and well fluxes and fields.
// Extract reservoir and well fluxes and state.
{
DebugTimeReport tr("Extracting fluxes");
extractFluxes(reservoir_state, well_state);
extractFields(reservoir_state);
extractState(reservoir_state, well_state);
}
// Compute cell ordering based on total flux.
@ -175,21 +227,24 @@ namespace Opm {
const BlackoilPropsAdFromDeck& props_;
ReservoirState reservoir_state0_;
WellState well_state0_;
struct State
{
ReservoirState reservoir_state;
WellState well_state;
V tr_mult;
};
State state0_;
State state_;
V total_flux_;
V total_wellperf_flux_;
DataBlock comp_wellperf_flux_;
std::vector<int> sequence_;
std::vector<int> components_;
V trans_all_;
V tr_mult0_;
V tr_mult_;
V gdz_;
V sw_;
V sg_;
V rs_;
V rv_;
// ============ Member functions ============
@ -217,14 +272,13 @@ namespace Opm {
void extractFields(const ReservoirState& reservoir_state)
void extractState(const ReservoirState& reservoir_state,
const WellState& well_state)
{
assert(numPhases() == 3);
const int n = reservoir_state.pressure().size();
sw_ = Eigen::Map<const DataBlock>(reservoir_state.saturation().data(), n, numPhases()).col(0);
sg_ = Eigen::Map<const DataBlock>(reservoir_state.saturation().data(), n, numPhases()).col(2);
rs_ = Eigen::Map<const V>(reservoir_state.gasoilratio().data(), n);
rv_ = Eigen::Map<const V>(reservoir_state.rv().data(), n);
state_.reservoir_state = reservoir_state;
state_.well_state = well_state;
const std::vector<double>& p = reservoir_state.pressure();
state_.tr_mult = Base::transMult(ADB::constant(Eigen::Map<const V>(p.data(), p.size()))).value();
}
@ -269,7 +323,8 @@ namespace Opm {
void solveSingleCell(const int cell)
{
Vec2 x = getInitialGuess(cell);
// Vec2 x = getInitialGuess(cell);
Vec2 x;
Vec2 res;
Mat22 jac;
assembleSingleCell(cell, x, res, jac);
@ -298,54 +353,131 @@ namespace Opm {
template <typename ScalarT>
struct CellState
{
using Scalar = ScalarT;
Scalar s[3];
Scalar rs;
Scalar rv;
Scalar p[3];
Scalar kr[3];
Scalar pc[3];
Scalar temperature;
Scalar mu[3];
Scalar b[3];
Scalar lambda[3];
// Implement interface used for opm-material properties.
const Scalar& saturation(int phaseIdx) const
{
return s[phaseIdx];
}
};
template <typename Scalar>
void computeCellState(const int cell, const State& state, CellState<Scalar>& cstate)
{
assert(numPhases() == 3); // I apologize for this to my future self, that will have to fix it.
// Extract from state and props.
const auto hcstate = state.reservoir_state.hydroCarbonState()[cell];
const bool is_sg = (hcstate == HydroCarbonState::GasAndOil);
const bool is_rs = (hcstate == HydroCarbonState::OilOnly);
const bool is_rv = (hcstate == HydroCarbonState::GasOnly);
const double swval = state.reservoir_state.saturation()[3*cell + Water];
const double sgval = state.reservoir_state.saturation()[3*cell + Gas];
const double rsval = state.reservoir_state.gasoilratio()[cell];
const double rvval = state.reservoir_state.rv()[cell];
const double poval = state.reservoir_state.pressure()[cell];
const int pvt_region = props_.pvtRegions()[cell];
// Property functions.
const auto& waterpvt = props_.waterProps();
const auto& oilpvt = props_.oilProps();
const auto& gaspvt = props_.gasProps();
const auto& satfunc = props_.materialLaws();
// Create saturation and composition variables.
detail::CreateVariable<Scalar> variable;
detail::CreateConstant<Scalar> constant;
cstate.s[Water] = variable(swval, 0);
cstate.s[Gas] = is_sg ? variable(sgval, 1) : constant(sgval);
cstate.s[Oil] = 1.0 - cstate.s[Water] - cstate.s[Gas];
cstate.rs = is_rs ? variable(rsval, 1) : constant(rsval);
cstate.rv = is_rv ? variable(rvval, 1) : constant(rvval);
// Compute relative permeabilities amd capillary pressures.
const auto& params = satfunc.materialLawParams(cell);
typedef BlackoilPropsAdFromDeck::MaterialLawManager::MaterialLaw MaterialLaw;
MaterialLaw::relativePermeabilities(cstate.kr, params, cstate);
MaterialLaw::capillaryPressures(cstate.pc, params, cstate);
// Compute phase pressures.
cstate.p[Oil] = constant(poval);
cstate.p[Water] = cstate.p[Oil] - cstate.pc[Water]; // pcow = po - pw
cstate.p[Gas] = cstate.p[Oil] + cstate.pc[Gas]; // pcog = pg - po (!)
// Compute PVT properties.
cstate.temperature = constant(0.0); // Temperature is not used.
cstate.mu[Water] = waterpvt.viscosity(pvt_region, cstate.temperature, cstate.p[Water]);
cstate.mu[Oil] = is_sg
? oilpvt.saturatedViscosity(pvt_region, cstate.temperature, cstate.p[Oil])
: oilpvt.viscosity(pvt_region, cstate.temperature, cstate.p[Oil], cstate.rs);
cstate.mu[Gas] = is_sg
? gaspvt.saturatedViscosity(pvt_region, cstate.temperature, cstate.p[Gas])
: gaspvt.viscosity(pvt_region, cstate.temperature, cstate.p[Gas], cstate.rv);
cstate.b[Water] = waterpvt.inverseFormationVolumeFactor(pvt_region, cstate.temperature, cstate.p[Water]);
cstate.b[Oil] = is_sg
? oilpvt.saturatedInverseFormationVolumeFactor(pvt_region, cstate.temperature, cstate.p[Oil])
: oilpvt.inverseFormationVolumeFactor(pvt_region, cstate.temperature, cstate.p[Oil], cstate.rs);
cstate.b[Gas] = is_sg
? gaspvt.saturatedInverseFormationVolumeFactor(pvt_region, cstate.temperature, cstate.p[Gas])
: gaspvt.inverseFormationVolumeFactor(pvt_region, cstate.temperature, cstate.p[Gas], cstate.rv);
// Compute mobilities.
for (int phase = 0; phase < 3; ++phase) {
cstate.lambda[phase] = cstate.kr[phase] / cstate.mu[phase];
}
}
void assembleSingleCell(const int cell, const Vec2& x, Vec2& res, Mat22& jac)
{
// Assemble oil and gas component material balance equations.
const auto& gaspvt = props_.gasProps();
const auto& oilpvt = props_.oilProps();
const auto& satfunc = props_.materialLaws();
assert(numPhases() == 3); // I apologize for this to my future self, that will have to fix it.
// Set variables.
CellState<double> cstate0;
computeCellState(cell, state0_, cstate0);
typedef DenseAd::Evaluation<double, 2> Eval;
Eval sw = x[0];
Eval sg = Base::isSg_[cell] ? x[1] : sg_[cell];
Eval rs = Base::isRs_[cell] ? x[1] : rs_[cell];
Eval rv = Base::isRv_[cell] ? x[1] : rv_[cell];
const Eval temp = 0.0; // Temperature not used.
CellState<Eval> cstate;
computeCellState(cell, state_, cstate);
// Set derivative to one for primary variables.
sw.derivatives[0] = 1.0;
if (Base::isSg_[cell]) {
sg.derivatives[1] = 1.0;
} else if (Base::isRs_[cell]) {
rs.derivatives[1] = 1.0;
} else {
assert(Base::isRv_[cell]);
rv.derivatives[1] = 1.0;
}
const Eval so = 1.0 - sw - sg;
// Compute fluid properties.
Eval mu[3];
// mu[Oil] = oilpvt.viscosity(pvt_region, temp, p);
Eval b[3];
Eval lambda[3];
// const Eval ao0 = 0.0;
// const Eval oileq = Base::pvdt_[cell];
res[0] = Base::pvdt_[cell]*(0.0);
jac[0][0] = 0.0;
}
Vec2 getInitialGuess(const int cell)
{
double xvar = (Base::isSg_[cell]) ? sg_[cell]
: ((Base::isRs_[cell]) ? rs_[cell] : rv_[cell]);
return Vec2{sw_[cell], xvar};
}
// Vec2 getInitialGuess(const State& state, const int cell)
// {
// const auto& hcs = state.hydroCarbonState();
// double xvar = (hcs[cell] == GasAndOil) ? sg_[cell]
// : ((hcs[cell] == OilOnly) ? rs_[cell] : rv_[cell]);
// return Vec2{sw_[cell], xvar};
// }