mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Added Newton step as first step in Splitting s-c residual solver.
This commit is contained in:
@@ -259,7 +259,6 @@ namespace Opm
|
||||
outflux = !src_is_inflow ? dflux : 0.0;
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
porosity = tm.porosity_[cell];
|
||||
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
@@ -284,6 +283,31 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
void computeExplicitStep(const double* xmin, const double* xmax, double* x) const {
|
||||
double ff = tm.fracFlow(s0, c0, cell);
|
||||
double mc = tm.computeMc(c0);
|
||||
double dps = tm.polyprops_.dps;
|
||||
//In this explicit step, we do not compute absorption and take ads0=ads
|
||||
// double rhor = tm.polyprops_.rhor;
|
||||
// double ads0 = tm.polyprops_.adsorbtion(std::max(c0, cmax0));
|
||||
// double ads = tm.polyprops_.adsorbtion(std::max(c, cmax0));
|
||||
|
||||
x[0] = s0 - dtpv*(outflux*ff + influx);
|
||||
x[1] = 1./(x[0] - dps)*((s0 - dps)*c0 - dtpv*(outflux*ff*mc + influx_polymer)); // + rhor*((1.0 - porosity)/porosity)*(ads - ads0)
|
||||
|
||||
// We check that the values we obtain remains admissible (this is not guaranted for an explicit step)
|
||||
if (x[0] < xmin[0]) {
|
||||
x[0] = xmin[0];
|
||||
} else if (x[0] > xmax[0]) {
|
||||
x[0] = xmax[0];
|
||||
}
|
||||
if (x[1] < xmin[1]) {
|
||||
x[1] = xmin[1];
|
||||
} else if (x[1] > xmax[1]) {
|
||||
x[1] = xmax[1];
|
||||
}
|
||||
}
|
||||
|
||||
void computeResidual(const double* x, double* res) const
|
||||
{
|
||||
double s = x[0];
|
||||
@@ -301,12 +325,81 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
// Compute gradient using finite difference.
|
||||
void computeGradient(const double* x, double* res, double* gradient, const int& method) const
|
||||
// If method == 1, use finite diference
|
||||
// If method == 2, use analytic expresions
|
||||
bool solveNewtonStep(const double* x, double* x_new, const int& gradient_method) {
|
||||
|
||||
// If gradient_method == 1, use finite difference
|
||||
// If gradient_method == 2, use analytic expresions
|
||||
|
||||
double res[2];
|
||||
double res_s_ds_dc[2];
|
||||
double res_c_ds_dc[2];
|
||||
|
||||
if (gradient_method == 1) {
|
||||
double epsi = 1e-8;
|
||||
double res_epsi[2];
|
||||
double x_epsi[2];
|
||||
computeResidual(x, res);
|
||||
x_epsi[0] = x[0] + epsi;
|
||||
x_epsi[1] = x[1];
|
||||
computeResidual(x_epsi, res_epsi);
|
||||
res_s_ds_dc[0] = (res_epsi[0] - res[0])/epsi;
|
||||
x_epsi[0] = x[0];
|
||||
x_epsi[1] = x[1] + epsi;
|
||||
computeResidual(x_epsi, res_epsi);
|
||||
res_s_ds_dc[1] = (res_epsi[0] - res[0])/epsi;
|
||||
x_epsi[0] = x[0] + epsi;
|
||||
x_epsi[1] = x[1];
|
||||
computeResidual(x_epsi, res_epsi);
|
||||
res_c_ds_dc[0] = (res_epsi[1] - res[1])/epsi;
|
||||
x_epsi[0] = x[0];
|
||||
x_epsi[1] = x[1] + epsi;
|
||||
computeResidual(x_epsi, res_epsi);
|
||||
res_c_ds_dc[1] = (res_epsi[1] - res[1])/epsi;
|
||||
} else if (gradient_method == 2) {
|
||||
double s = x[0];
|
||||
double c = x[1];
|
||||
double ff_ds_dc[2];
|
||||
double ff = tm.fracFlowWithDer(s, c, cell, ff_ds_dc);
|
||||
double mc_dc;
|
||||
double mc = tm.computeMcWithDer(c, &mc_dc);
|
||||
double dps = tm.polyprops_.dps;
|
||||
double rhor = tm.polyprops_.rhor;
|
||||
double ads0 = tm.polyprops_.adsorbtion(std::max(c0, cmax0));
|
||||
double ads;
|
||||
double ads_dc;
|
||||
if (c < cmax0) {
|
||||
ads = tm.polyprops_.adsorbtion(cmax0);
|
||||
ads_dc = 0;
|
||||
} else {
|
||||
ads = tm.polyprops_.adsorbtionWithDer(c, &ads_dc);
|
||||
}
|
||||
res[0] = s - s0 + dtpv*(outflux*ff + influx);
|
||||
res[1] = (s - dps)*c - (s0 - dps)*c0
|
||||
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
|
||||
+ dtpv*(outflux*ff*mc + influx_polymer);
|
||||
res_s_ds_dc[0] = 1 + dtpv*outflux*ff_ds_dc[0];
|
||||
res_s_ds_dc[1] = dtpv*outflux*ff_ds_dc[1];
|
||||
res_c_ds_dc[0] = c + dtpv*outflux*(ff_ds_dc[0])*mc;
|
||||
res_c_ds_dc[1] = s - dps + rhor*((1.0 - porosity)/porosity)*ads_dc
|
||||
+ dtpv*outflux*(ff_ds_dc[1]*mc + ff*mc_dc);
|
||||
}
|
||||
|
||||
double det = res_s_ds_dc[0]*res_c_ds_dc[1] - res_c_ds_dc[0]*res_s_ds_dc[1];
|
||||
if (std::abs(det) < 1e-8) {
|
||||
return false;
|
||||
} else {
|
||||
x_new[0] = x[0] - (res[0]*res_c_ds_dc[1] - res[1]*res_s_ds_dc[1])/det;
|
||||
x_new[1] = x[1] - (res[1]*res_s_ds_dc[0] - res[0]*res_c_ds_dc[0])/det;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void computeGradient(const double* x, double* res, double* gradient, const int& gradient_method) const
|
||||
// If gradient_method == 1, use finite difference
|
||||
// If gradient_method == 2, use analytic expresions
|
||||
{
|
||||
if (method == 1) {
|
||||
if (gradient_method == 1) {
|
||||
double epsi = 1e-8;
|
||||
double res_epsi[2];
|
||||
double x_epsi[2];
|
||||
@@ -330,7 +423,7 @@ namespace Opm
|
||||
computeResidual(x_epsi, res_epsi);
|
||||
gradient[1] = (res_epsi[1] - res[1])/epsi;
|
||||
}
|
||||
} else if (method == 2) {
|
||||
} else if (gradient_method == 2) {
|
||||
double s = x[0];
|
||||
double c = x[1];
|
||||
double ff_ds_dc[2];
|
||||
@@ -499,7 +592,7 @@ namespace Opm
|
||||
// the tolerance for 1d solver is set as a function of the residual
|
||||
// The tolerance falsi_tol is improved by (reduc_factor_falsi_tol * "previous residual") at each step
|
||||
double falsi_tol;
|
||||
double reduc_factor_falsi_tol = 1e-5;
|
||||
double reduc_factor_falsi_tol = 1e-4;
|
||||
const double gradient_method = 2; // method to compute derivative ( 1: finite difference, 2: formulae)
|
||||
int iters_used_falsi = 0;
|
||||
const int max_iters_split = 20;
|
||||
@@ -509,14 +602,18 @@ namespace Opm
|
||||
Residual residual(*this, cell);
|
||||
double x[2] = {saturation_[cell], concentration_[cell]};
|
||||
double res[2];
|
||||
|
||||
residual.computeResidual(x, res);
|
||||
|
||||
if (norm(res) < tol) {
|
||||
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], concentration_[cell], cell);
|
||||
mc_[cell] = computeMc(concentration_[cell]);
|
||||
return;
|
||||
}
|
||||
|
||||
bool res_s_done;
|
||||
double x_min[2] = {0.0, 0.0};
|
||||
double x_min[2] = {polyprops_.dps, 0.0};
|
||||
double x_max[2] = {1.0, polyprops_.c_max_limit};
|
||||
double t;
|
||||
double t_max;
|
||||
@@ -524,6 +621,13 @@ namespace Opm
|
||||
double direction[2];
|
||||
double end_point[2];
|
||||
double gradient[2];
|
||||
bool unsuccessfull_newton_step;
|
||||
double x_new[2];
|
||||
double res_new[2];
|
||||
|
||||
// // Update x=(s, c) with an explicit solver.
|
||||
// residual.computeExplicitStep(x_min, x_max, x);
|
||||
// residual.computeResidual(x, res);
|
||||
|
||||
if (std::abs(res[0]) < std::abs(res[1])) {
|
||||
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol);
|
||||
@@ -552,6 +656,49 @@ namespace Opm
|
||||
}
|
||||
|
||||
while ((norm(res) > tol) && (iters_used_split < max_iters_split)) {
|
||||
// We first try a Newton step
|
||||
if (residual.solveNewtonStep(x, x_new, gradient_method)) {
|
||||
residual.computeResidual(x_new, res_new);
|
||||
unsuccessfull_newton_step = false;
|
||||
if (norm(res_new) > norm(res) || x_new[0] < x_min[0] || x_new[1] < x_min[1] || x_new[0] > x_max[0] || x_new[1] > x_max[1]) {
|
||||
unsuccessfull_newton_step = true;
|
||||
} else {
|
||||
x[0] = x_new[0];
|
||||
x[1] = x_new[1];
|
||||
res[0] = res_new[0];
|
||||
res[1] = res_new[1];
|
||||
if (std::abs(res[0]) < std::abs(res[1])) {
|
||||
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol);
|
||||
if (std::abs(res[0]) > tol) {
|
||||
if (res[0] < 0) {
|
||||
direction[0] = x_max[0] - x[0];
|
||||
direction[1] = x_min[1] - x[1];
|
||||
} else {
|
||||
direction[0] = x_min[0] - x[0];
|
||||
direction[1] = x_max[1] - x[1];
|
||||
}
|
||||
res_s_done = false; // means that we will start by finding zero of s-residual.
|
||||
}
|
||||
} else {
|
||||
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[1]), tol);
|
||||
if (std::abs(res[1]) > tol) {
|
||||
if (res[1] < 0) {
|
||||
direction[0] = x_max[0] - x[0];
|
||||
direction[1] = x_max[1] - x[1];
|
||||
}
|
||||
} else {
|
||||
direction[0] = x_min[0] - x[0];
|
||||
direction[1] = x_min[1] - x[1];
|
||||
}
|
||||
res_s_done = true; // means that we will start by finding zero of c-residual.
|
||||
}
|
||||
|
||||
}
|
||||
} else {
|
||||
unsuccessfull_newton_step = true;
|
||||
}
|
||||
|
||||
if (unsuccessfull_newton_step) {
|
||||
if (res_s_done) { // solve for c-residual
|
||||
if (res[1] < 0) {
|
||||
// We update the bounding box (Here we assume that the curve res_s(s,c)=0 is
|
||||
@@ -618,13 +765,14 @@ namespace Opm
|
||||
direction[0] = -gradient[1];
|
||||
direction[1] = gradient[0];
|
||||
}
|
||||
|
||||
iters_used_split += 1;
|
||||
}
|
||||
}
|
||||
|
||||
if ((iters_used_split >= max_iters_split) && (norm(res) >= tol)) {
|
||||
solveSingleCellBracketing(cell);
|
||||
std::cout << "splitting did not work" << std::endl;
|
||||
std::cout << "cell number" << cell << std::endl;
|
||||
} else {
|
||||
concentration_[cell] = x[1];
|
||||
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
|
||||
|
||||
Reference in New Issue
Block a user