Merge pull request #1371 from kel85uk/task/#3/BlackoilAquiferModel

[WIP] Task/#1372/blackoil aquifer model
This commit is contained in:
Kai Bao 2018-06-04 22:02:26 +02:00 committed by GitHub
commit b3e3b625b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 637 additions and 13 deletions

2
.gitignore vendored
View File

@ -32,3 +32,5 @@ test_vec
# emacs directory setting:
.dir-locals.el
build

7
compareECLFiles.cmake Normal file → Executable file
View File

@ -195,6 +195,13 @@ add_test_compareECLFiles(CASENAME spe1_thermal
REL_TOL ${rel_tol}
DIR spe1)
add_test_compareECLFiles(CASENAME ctaquifer_2d_oilwater
FILENAME 2D_OW_CTAQUIFER
SIMULATOR flow
ABS_TOL ${abs_tol}
REL_TOL ${rel_tol}
DIR aquifer-oilwater)
foreach(SIM flow flow_legacy)
add_test_compareECLFiles(CASENAME spe3
FILENAME SPE3CASE1

View File

@ -0,0 +1,366 @@
/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
#include <algorithm>
namespace Opm
{
template<typename TypeTag>
class AquiferCarterTracy
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem> FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
AquiferCarterTracy( const AquiferCT::AQUCT_data& aquct_data,
const Aquancon::AquanconOutput& connection,
Simulator& ebosSimulator )
: ebos_simulator_ (ebosSimulator),
aquct_data_ (aquct_data),
gravity_ (ebos_simulator_.problem().gravity()[2])
{
initQuantities(connection);
}
inline void assembleAquiferEq(const SimulatorTimerInterface& timer)
{
auto& ebosJac = ebos_simulator_.model().linearizer().matrix();
auto& ebosResid = ebos_simulator_.model().linearizer().residual();
size_t cellID;
for ( size_t idx = 0; idx < cell_idx_.size(); ++idx )
{
Eval qinflow = 0.0;
cellID = cell_idx_.at(idx);
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellID, /*timeIdx=*/ 0));
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, timer);
qinflow = Qai_.at(idx);
ebosResid[cellID][waterCompIdx] -= qinflow.value();
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx)
{
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cellID][cellID][waterCompIdx][pvIdx] -= qinflow.derivative(pvIdx);
}
}
}
inline void beforeTimeStep(const SimulatorTimerInterface& timer)
{
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
{
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
updateCellPressure(pressure_previous_ ,idx,intQuants);
}
}
inline void afterTimeStep(const SimulatorTimerInterface& timer)
{
for (auto Qai = Qai_.begin(); Qai != Qai_.end(); ++Qai)
{
W_flux_ += (*Qai)*timer.currentStepLength();
}
}
private:
Simulator& ebos_simulator_;
// Grid variables
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar mu_w_ , //water viscosity
beta_ , // Influx constant
Tc_ , // Time constant
pa0_ , // initial aquifer pressure
gravity_ ; // gravitational acceleration
Eval W_flux_;
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
}
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initializeConnections(connection);
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
{
const Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc_;
const Scalar td = timer.simulationTimeElapsed() / Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0/Tc_ * ( (beta_ * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta_ / (Tc_ * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const SimulatorTimerInterface& timer)
{
Scalar a, b;
calculateEqnConstants(a,b,idx,timer);
Qai_.at(idx) = alphai_.at(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx) ) );
}
inline void calculateAquiferConstants()
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
}
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initializeConnections(const Aquancon::AquanconOutput& connection)
{
const auto& eclState = ebos_simulator_.vanguard().eclState();
const auto& ugrid = ebos_simulator_.vanguard().grid();
const auto& grid = eclState.getInputGrid();
cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
assert( cell_idx_ == connection.global_index);
assert( (cell_idx_.size() == connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
cell_depth_.resize(cell_idx_.size(), aquct_data_.d0);
alphai_.resize(cell_idx_.size(), 1.0);
faceArea_connected_.resize(cell_idx_.size(),0.0);
Scalar faceArea;
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::AutoDiffGrid::faceCells(ugrid);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
auto cellFacesRange = cell2Faces[cell_idx_.at(idx)];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
faceArea = (faceCells(faceIdx,0)*faceCells(faceIdx,1) > 0)? 0. : Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
faceArea_connected_.at(idx) = faceArea;
denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) );
}
}
auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
cell_depth_.at(idx) = cellCenter[2];
}
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
alphai_.at(idx) = ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas;
}
}
inline void calculateAquiferCondition()
{
int pvttableIdx = aquct_data_.pvttableID - 1;
rhow_.resize(cell_idx_.size(),0.);
if (aquct_data_.p0 < 1.0)
{
pa0_ = calculateReservoirEquilibrium();
}
else
{
pa0_ = aquct_data_.p0;
}
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( ebos_simulator_.model().cachedIntensiveQuantities(cell_idx_.at(0), /*timeIdx=*/ 0)->fluidState() );
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
inline Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
size_t cellIDx = cell_idx_.at(idx);
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellIDx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
rhow_.at(idx) = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0))*alphai_.at(idx) );
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
return aquifer_pres_avg;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif

View File

@ -0,0 +1,82 @@
/*
File adapted from BlackoilWellModel.hpp
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#define OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/autodiff/AquiferCarterTracy.hpp>
#include <opm/material/densead/Math.hpp>
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilAquiferModel {
public:
// --------- Types ---------
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef AquiferCarterTracy<TypeTag> Aquifer_object;
explicit BlackoilAquiferModel(Simulator& ebosSimulator);
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble( const SimulatorTimerInterface& timer,
const int iterationIdx );
// called at the end of a time step
void timeStepSucceeded(const SimulatorTimerInterface& timer);
protected:
Simulator& ebosSimulator_;
std::vector<Aquifer_object> aquifers_;
// This initialization function is used to connect the parser objects with the ones needed by AquiferCarterTracy
void init();
void updateConnectionIntensiveQuantities() const;
void assembleAquiferEq(const SimulatorTimerInterface& timer);
// at the beginning of each time step (Not report step)
void prepareTimeStep(const SimulatorTimerInterface& timer);
bool aquiferActive() const;
};
} // namespace Opm
#include "BlackoilAquiferModel_impl.hpp"
#endif

View File

@ -0,0 +1,130 @@
namespace Opm {
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
{
init();
}
// called at the end of a time step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: timeStepSucceeded(const SimulatorTimerInterface& timer)
{
if ( !aquiferActive() ) {
return;
}
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->afterTimeStep(timer);
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::
assemble( const SimulatorTimerInterface& timer,
const int iterationIdx )
{
if ( !aquiferActive() ) {
return;
}
// We need to update the reservoir pressures connected to the aquifer
updateConnectionIntensiveQuantities();
if (iterationIdx == 0) {
// We can do the Table check and coefficients update in this function
// For now, it does nothing!
prepareTimeStep(timer);
}
assembleAquiferEq(timer);
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: updateConnectionIntensiveQuantities() const
{
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
// Protected function which calls the individual aquifer models
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: assembleAquiferEq(const SimulatorTimerInterface& timer)
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->assembleAquiferEq(timer);
}
}
// Protected function
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: prepareTimeStep(const SimulatorTimerInterface& timer)
{
// Here we can ask each carter tracy aquifers to get the current previous time step's pressure
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->beforeTimeStep(timer);
}
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init()
{
const auto& deck = ebosSimulator_.vanguard().deck();
if ( !deck.hasKeyword("AQUCT") ) {
return ;
}
updateConnectionIntensiveQuantities();
const auto& eclState = ebosSimulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const AquiferCT aquiferct = AquiferCT(eclState,deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), ebosSimulator_)
);
}
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
{
return !aquifers_.empty();
}
} // namespace Opm

View File

@ -29,6 +29,7 @@
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/WellConnectionAuxiliaryModule.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
@ -143,6 +144,7 @@ namespace Opm {
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
BlackoilWellModel<TypeTag>& well_model,
BlackoilAquiferModel<TypeTag>& aquifer_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output
)
@ -157,6 +159,7 @@ namespace Opm {
, has_energy_(GET_PROP_VALUE(TypeTag, EnableEnergy))
, param_( param )
, well_model_ (well_model)
, aquifer_model_(aquifer_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, dx_old_(UgGridHelpers::numCells(grid_))
@ -349,6 +352,7 @@ namespace Opm {
DUNE_UNUSED_PARAMETER(well_state);
wellModel().timeStepSucceeded();
aquiferModel().timeStepSucceeded(timer);
ebosSimulator_.problem().endTimeStep();
}
@ -365,9 +369,22 @@ namespace Opm {
ebosSimulator_.problem().beginIteration();
ebosSimulator_.model().linearizer().linearize();
ebosSimulator_.problem().endIteration();
// -------- Aquifer models ----------
try
{
// Modify the Jacobian and residuals according to the aquifer models
aquiferModel().assemble(timer, iterationIdx);
}
catch( ... )
{
OPM_THROW(Opm::NumericalIssue,"Error when assembling aquifer models");
}
// -------- Current time step length ----------
const double dt = timer.currentStepLength();
// -------- Well equations ----------
double dt = timer.currentStepLength();
try
{
@ -409,13 +426,13 @@ namespace Opm {
if (elem.partitionType() != Dune::InteriorEntity)
continue;
unsigned globalElemIdx = elemMapper.index(elem);
unsigned globalElemIdx = elemMapper.index(elem);
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
Scalar pressureNew;
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationNew = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx];
@ -458,7 +475,7 @@ namespace Opm {
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
resultDelta += tmp*tmp;
resultDelta += tmp*tmp;
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
}
}
@ -466,9 +483,9 @@ namespace Opm {
resultDelta = gridView.comm().sum(resultDelta);
resultDenom = gridView.comm().sum(resultDenom);
if (resultDenom > 0.0)
return resultDelta/resultDenom;
return 0.0;
if (resultDenom > 0.0)
return resultDelta/resultDenom;
return 0.0;
}
@ -1081,6 +1098,9 @@ namespace Opm {
// Well Model
BlackoilWellModel<TypeTag>& well_model_;
// Aquifer Model
BlackoilAquiferModel<TypeTag>& aquifer_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
@ -1100,6 +1120,9 @@ namespace Opm {
const BlackoilWellModel<TypeTag>&
wellModel() const { return well_model_; }
BlackoilAquiferModel<TypeTag>&
aquiferModel() { return aquifer_model_; }
void beginReportStep()
{
ebosSimulator_.problem().beginEpisode();
@ -1112,7 +1135,6 @@ namespace Opm {
private:
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
@ -1123,4 +1145,4 @@ namespace Opm {
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED

View File

@ -29,6 +29,7 @@
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/grid/utility/StopWatch.hpp>
@ -65,6 +66,7 @@ public:
typedef BlackoilModelParameters ModelParameters;
typedef NonlinearSolver<Model> Solver;
typedef BlackoilWellModel<TypeTag> WellModel;
typedef BlackoilAquiferModel<TypeTag> AquiferModel;
/// Initialise from parameters and objects to observe.
@ -187,6 +189,8 @@ public:
ebosSimulator_.model().addAuxiliaryModule(auxMod);
}
AquiferModel aquifer_model(ebosSimulator_);
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
@ -202,7 +206,7 @@ public:
well_model.beginReportStep(timer.currentStepNum());
auto solver = createSolver(well_model);
auto solver = createSolver(well_model, aquifer_model);
// write the inital state at the report stage
if (timer.initialStep()) {
@ -308,6 +312,7 @@ public:
total_timer.stop();
report.total_time = total_timer.secsSinceStart();
report.converged = true;
return report;
}
@ -320,11 +325,12 @@ public:
protected:
std::unique_ptr<Solver> createSolver(WellModel& well_model)
std::unique_ptr<Solver> createSolver(WellModel& well_model, AquiferModel& aquifer_model)
{
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
model_param_,
well_model,
aquifer_model,
solver_,
terminal_output_));

View File

@ -20,7 +20,7 @@ copyToReferenceDir () {
}
tests=${@:2}
test -z "$tests" && tests="spe11 spe12 spe12p spe1oilgas spe1nowells spe1thermal spe3 spe5 spe9 norne_init msw_2d_h msw_3d_hfa polymer2d spe9group polymer_oilwater"
test -z "$tests" && tests="spe11 spe12 spe12p spe1oilgas spe1nowells spe1thermal ctaquifer_2d_oilwater spe3 spe5 spe9 norne_init msw_2d_h msw_3d_hfa polymer2d spe9group polymer_oilwater"
if grep -q -i "norne " <<< $ghprbCommentBody
then
if test -d $WORKSPACE/deps/opm-tests/norne/flow
@ -98,6 +98,15 @@ for test_name in ${tests}; do
EGRID INIT SMSPEC UNRST UNSMRY
fi
if grep -q "ctaquifer_2d_oilwater" <<< $test_name
then
copyToReferenceDir \
$configuration/build-opm-simulators/tests/results/flow+ctaquifer_2d_oilwater/ \
$OPM_TESTS_ROOT/aquifer-oilwater/opm-simulation-reference/flow \
2D_OW_CTAQUIFER \
EGRID INIT SMSPEC UNRST UNSMRY
fi
if grep -q "msw_2d_h" <<< $test_name
then
copyToReferenceDir \