Merge pull request #5636 from multitalentloes/gpu_support_co2gaspvt

Gpu support co2gaspvt
This commit is contained in:
Atgeirr Flø Rasmussen 2024-11-08 15:39:53 +01:00 committed by GitHub
commit be2c078e71
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 295 additions and 16 deletions

View File

@ -682,6 +682,7 @@ if(CUDA_FOUND)
GpuView
gpu_ad
gpu_linear_two_phase_material
gpuPvt
PROPERTIES LABELS ${gpu_label})
endif()

View File

@ -457,12 +457,14 @@ if (HAVE_CUDA)
ADD_CUDA_OR_HIP_FILE(TEST_SOURCE_FILES tests test_solver_adapter.cpp)
ADD_CUDA_OR_HIP_FILE(TEST_SOURCE_FILES tests test_gpu_ad.cu)
ADD_CUDA_OR_HIP_FILE(TEST_SOURCE_FILES tests test_gpu_linear_two_phase_material.cu)
ADD_CUDA_OR_HIP_FILE(TEST_SOURCE_FILES tests test_gpuPvt.cu)
# for loop providing the flag --expt-relaxed-constexpr to fix some cuda issues with constexpr
if(NOT CONVERT_CUDA_TO_HIP)
set(CU_FILES_NEEDING_RELAXED_CONSTEXPR
tests/gpuistl/test_gpu_ad.cu
tests/gpuistl/test_gpu_linear_two_phase_material.cu
tests/gpuistl/test_gpuPvt.cu
)
foreach(file ${CU_FILES_NEEDING_RELAXED_CONSTEXPR})

View File

@ -84,22 +84,29 @@ GpuBuffer<T>::resize(size_t newSize)
if (newSize < 1) {
OPM_THROW(std::invalid_argument, "Setting a GpuBuffer size to a non-positive number is not allowed");
}
// Allocate memory for the new buffer
T* tmpBuffer = nullptr;
OPM_GPU_SAFE_CALL(cudaMalloc(&tmpBuffer, sizeof(T) * newSize));
// Move the data from the old to the new buffer with truncation
size_t sizeOfMove = std::min({m_numberOfElements, newSize});
OPM_GPU_SAFE_CALL(cudaMemcpy(tmpBuffer,
m_dataOnDevice,
sizeOfMove * sizeof(T),
cudaMemcpyDeviceToDevice));
if (m_numberOfElements == 0) {
// We have no data, so we can just allocate new memory
OPM_GPU_SAFE_CALL(cudaMalloc(&m_dataOnDevice, sizeof(T) * newSize));
}
else {
// Allocate memory for temporary buffer
T* tmpBuffer = nullptr;
OPM_GPU_SAFE_CALL(cudaMalloc(&tmpBuffer, sizeof(T) * m_numberOfElements));
// free the old buffer
OPM_GPU_SAFE_CALL(cudaFree(m_dataOnDevice));
// Move the data from the old to the new buffer with truncation
size_t sizeOfMove = std::min({m_numberOfElements, newSize});
OPM_GPU_SAFE_CALL(cudaMemcpy(tmpBuffer,
m_dataOnDevice,
sizeOfMove * sizeof(T),
cudaMemcpyDeviceToDevice));
// swap the buffers
m_dataOnDevice = tmpBuffer;
// free the old buffer
OPM_GPU_SAFE_CALL(cudaFree(m_dataOnDevice));
// swap the buffers
m_dataOnDevice = tmpBuffer;
}
// update size
m_numberOfElements = newSize;

View File

@ -81,9 +81,9 @@ public:
explicit GpuBuffer(const std::vector<T>& data);
/**
* @brief Default constructor that will initialize cublas and allocate 0 bytes of memory
* @brief Default constructor not allocating any memory
*/
explicit GpuBuffer();
GpuBuffer() = default;
/**
* @brief GpuBuffer allocates new GPU memory of size numberOfElements * sizeof(T)
@ -265,7 +265,7 @@ public:
private:
T* m_dataOnDevice = nullptr;
size_t m_numberOfElements;
size_t m_numberOfElements = 0;
void assertSameSize(const GpuBuffer<T>& other) const;
void assertSameSize(size_t size) const;

View File

@ -0,0 +1,269 @@
#include <config.h>
#define BOOST_TEST_MODULE TestGpuPvt
#include <boost/test/unit_test.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/common/UniformTabulated2DFunction.hpp>
#include <opm/material/components/CO2Tables.hpp>
#include <opm/material/components/CO2.hpp>
#include <opm/material/components/SimpleHuDuanH2O.hpp>
#include <opm/material/components/BrineDynamic.hpp>
#include <opm/material/binarycoefficients/Brine_CO2.hpp>
#include <opm/material/fluidsystems/blackoilpvt/Co2GasPvt.hpp>
#include <opm/input/eclipse/EclipseState/Co2StoreConfig.hpp>
#include <opm/simulators/linalg/gpuistl/detail/gpu_safe_call.hpp>
#include <opm/simulators/linalg/gpuistl/GpuBuffer.hpp>
#include <opm/simulators/linalg/gpuistl/GpuView.hpp>
#include <cuda_runtime.h>
#include <vector>
#include <utility>
#include <cmath>
using Evaluation = Opm::DenseAd::Evaluation<double, 3>;
using GpuB = const Opm::gpuistl::GpuBuffer<double>;
using GpuV = Opm::gpuistl::GpuView<const double>;
using GpuTab = Opm::UniformTabulated2DFunction<double, GpuV>;
using GpuBufCo2Tables = Opm::CO2Tables<double, GpuB>;
using GpuViewCO2Tables = Opm::CO2Tables<double, GpuV>;
using GpuCO2 = Opm::CO2<double, GpuViewCO2Tables>;
using HuDuan = Opm::SimpleHuDuanH2O<double>;
using BrineDyn = Opm::BrineDynamic<double, HuDuan>;
using CpuBrine_CO2 = Opm::BinaryCoeff::Brine_CO2<double, HuDuan, Opm::CO2<double>>;
using GpuBrine_CO2 = Opm::BinaryCoeff::Brine_CO2<double, HuDuan, GpuCO2>;
using CpuCo2Pvt = Opm::Co2GasPvt<double>;
using GpuBufCo2Pvt = Opm::Co2GasPvt<double, GpuBufCo2Tables, GpuB>;
using GpuViewCo2Pvt = Opm::Co2GasPvt<double, GpuViewCO2Tables, GpuV>;
namespace {
/*
This file contains unit tests for Pvt objects and function on the GPU, with additional helper classes
*/
const double ABS_TOL = 1e-6;
struct Fixture {
Fixture(){
temp = Evaluation(290.5);
pressure = Evaluation(200000.0);
gpuComputedResultOnCpu = 0.0;
// move pvt evaluations to gpu
OPM_GPU_SAFE_CALL(cudaMalloc(&gpuTemp, sizeof(Evaluation)));
OPM_GPU_SAFE_CALL(cudaMemcpy(gpuTemp, &temp, sizeof(Evaluation), cudaMemcpyHostToDevice));
OPM_GPU_SAFE_CALL(cudaMalloc(&gpuPressure, sizeof(Evaluation)));
OPM_GPU_SAFE_CALL(cudaMemcpy(gpuPressure, &pressure, sizeof(Evaluation), cudaMemcpyHostToDevice));
}
~Fixture(){
OPM_GPU_SAFE_CALL(cudaFree(gpuTemp));
OPM_GPU_SAFE_CALL(cudaFree(gpuPressure));
}
Evaluation temp; // [K]
Evaluation pressure; // [Pa]
Evaluation* gpuTemp; // [K]
Evaluation* gpuPressure; // [Pa]
double gpuComputedResultOnCpu;
Opm::CO2Tables<double, std::vector<double>> co2Tables;
};
// Kernel to evaluate a 2D function on the GPU
__global__ void gpuEvaluateUniformTabulated2DFunction(GpuTab gpuTab, Evaluation* inputX, Evaluation* inputY, double* result) {
*result = gpuTab.eval(*inputX, *inputY, true).value();
}
// Kernel using a CO2 object on the GPU
__global__ void gpuCO2GasViscosity(GpuViewCO2Tables gpuViewCo2Tables, Evaluation* temp, Evaluation* pressure, double* result) {
*result = GpuCO2::gasViscosity<Evaluation>(gpuViewCo2Tables, *temp, *pressure, true).value();
}
// Kernel using a SimpleHuDuanH20 object on a GPU
__global__ void huDuanLiquidDensity(Evaluation* temp, Evaluation* pressure, double* result) {
*result = HuDuan::liquidDensity<Evaluation>(*temp, *pressure, true).value();
}
// Kernel using a BrineDynamic object on a GPU
__global__ void brineDynamicLiquidEnthalpy(Evaluation* temp, Evaluation* pressure, Evaluation* salinity, double* result) {
*result = BrineDyn::liquidEnthalpy<Evaluation>(*temp, *pressure, *salinity).value();
}
// Kernel using a Brine_CO2 object on a GPU
__global__ void brineCO2GasDiffCoeff(GpuViewCO2Tables co2tables, Evaluation* temp, Evaluation* pressure, double* result) {
*result = GpuBrine_CO2::gasDiffCoeff<Evaluation, GpuViewCO2Tables>(co2tables, *temp, *pressure, true).value();
}
// Kernel using a Co2GasPvt object on a GPU
__global__ void co2GasPvtInternalEnergy(GpuViewCo2Pvt gpuViewCo2Pvt, Evaluation* temp, Evaluation* pressure, double* result) {
*result = gpuViewCo2Pvt.internalEnergy<Evaluation>(1, *temp, *pressure, Evaluation(0.4), Evaluation(0.0)).value();
}
// Helper function to launch a kernel and retrieve the result on the CPU to reduce code duplicatoin
template <typename KernelFunc, typename... Args>
double launchKernelAndRetrieveResult(KernelFunc kernel, Args... args) {
double* resultOnGpu;
double gpuComputedResultOnCpu;
// Allocate memory for the result on the GPU
OPM_GPU_SAFE_CALL(cudaMalloc(&resultOnGpu, sizeof(double)));
// Launch the kernel
kernel<<<1, 1>>>(args..., resultOnGpu);
// Check for any errors in kernel launch
OPM_GPU_SAFE_CALL(cudaPeekAtLastError());
OPM_GPU_SAFE_CALL(cudaDeviceSynchronize());
// Retrieve the result from the GPU to the CPU
OPM_GPU_SAFE_CALL(cudaMemcpy(&gpuComputedResultOnCpu, resultOnGpu, sizeof(double), cudaMemcpyDeviceToHost));
// Free allocated GPU memory
OPM_GPU_SAFE_CALL(cudaFree(resultOnGpu));
return gpuComputedResultOnCpu;
}
bool compareSignificantDigits(double a, double b, int significantDigits) {
// Handle the case where both values are exactly equal
if (a == b) {
return true;
}
// Calculate the relative error
double relativeError = std::abs(a - b) / std::max(std::abs(a), std::abs(b));
// Compute the number of matching digits
double digitsMatched = -std::log10(relativeError);
// Return true if they match the required number of significant digits
return digitsMatched >= significantDigits;
}
} // END EMPTY NAMESPACE
// Test case for evaluating a tabulated 2D function on both CPU and GPU
BOOST_FIXTURE_TEST_CASE(TestEvaluateUniformTabulated2DFunctionOnGpu, Fixture) {
// Example tabulated data (2D)
std::vector<std::vector<double>> tabData = {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}};
// CPU-side function definition
Opm::UniformTabulated2DFunction<double> cpuTab(1.0, 6.0, 3, 1.0, 6.0, 2, tabData);
// Move data to GPU buffer and create a view for GPU operations
Opm::UniformTabulated2DFunction<double, GpuB> gpuBufTab = Opm::gpuistl::move_to_gpu<double, GpuB>(cpuTab);
GpuTab gpuViewTab = Opm::gpuistl::make_view<GpuV>(gpuBufTab);
// Evaluation points on the CPU
Evaluation a(2.3);
Evaluation b(4.5);
// Allocate GPU memory for the Evaluation inputs
Evaluation* gpuA = nullptr;
Evaluation* gpuB = nullptr;
OPM_GPU_SAFE_CALL(cudaMalloc(&gpuA, sizeof(Evaluation)));
OPM_GPU_SAFE_CALL(cudaMemcpy(gpuA, &a, sizeof(Evaluation), cudaMemcpyHostToDevice));
OPM_GPU_SAFE_CALL(cudaMalloc(&gpuB, sizeof(Evaluation)));
OPM_GPU_SAFE_CALL(cudaMemcpy(gpuB, &b, sizeof(Evaluation), cudaMemcpyHostToDevice));
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(gpuEvaluateUniformTabulated2DFunction, gpuViewTab, gpuA, gpuB);
// Free allocated GPU memory
OPM_GPU_SAFE_CALL(cudaFree(gpuA));
OPM_GPU_SAFE_CALL(cudaFree(gpuB));
// Verify that the CPU and GPU results match within a reasonable tolerance
const double cpuComputedResult = cpuTab.eval(a, b, true).value();
BOOST_CHECK(std::fabs(gpuComputedResultOnCpu - cpuComputedResult) < ABS_TOL);
}
// Test case evaluating CO2 pvt properties on CPU and GPU
BOOST_FIXTURE_TEST_CASE(TestUseCO2OnGpu, Fixture) {
// use the CO2 tables to aquire the viscosity at 290[K] and 2e5[Pa]
double viscosityReference = Opm::CO2<double, Opm::CO2Tables<double, std::vector<double>>>::gasViscosity<Evaluation>(co2Tables, temp, pressure, true).value();
GpuBufCo2Tables gpuBufCo2Table = Opm::gpuistl::move_to_gpu<double, std::vector<double>, GpuB>(co2Tables);
GpuViewCO2Tables gpuViewCo2Table = Opm::gpuistl::make_view<GpuV>(gpuBufCo2Table);
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(gpuCO2GasViscosity, gpuViewCo2Table, gpuTemp, gpuPressure);
// Verify that the CPU and GPU results match within a reasonable tolerance
BOOST_CHECK(std::fabs(gpuComputedResultOnCpu - viscosityReference) < ABS_TOL);
}
// Test case evaluating pvt values for SimpleHuDuanH20 on a GPU and CPU
BOOST_FIXTURE_TEST_CASE(TestUseH2OOnGpu, Fixture) {
// use the CO2 tables to aquire the densityReference at 290[K] and 2e5[Pa]
double densityReference = HuDuan::liquidDensity<Evaluation>(temp, pressure, true).value();
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(huDuanLiquidDensity, gpuTemp, gpuPressure);
// Verify that the CPU and GPU results match within a reasonable tolerance
BOOST_CHECK(std::fabs(gpuComputedResultOnCpu - densityReference) < ABS_TOL);
}
// Test case evaluating pvt values for BrineDynamic on a GPU and CPU
BOOST_FIXTURE_TEST_CASE(TestUseBrineDynamicOnGpu, Fixture) {
Evaluation salinity(0.1); // [g/Kg]
// use the CO2 tables to aquire the enthalpyReference at 290[K] and 2e5[Pa]
double enthalpyReference = BrineDyn::liquidEnthalpy<Evaluation>(temp, pressure, salinity).value();
// Allocate GPU memory for the Evaluation inputs
Evaluation* gpuSalinity = nullptr;
OPM_GPU_SAFE_CALL(cudaMalloc(&gpuSalinity, sizeof(Evaluation)));
OPM_GPU_SAFE_CALL(cudaMemcpy(gpuSalinity, &salinity, sizeof(Evaluation), cudaMemcpyHostToDevice));
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(brineDynamicLiquidEnthalpy, gpuTemp, gpuPressure, gpuSalinity);
// Verify that the CPU and GPU results match within a reasonable tolerance
BOOST_CHECK(std::fabs(gpuComputedResultOnCpu - enthalpyReference) < ABS_TOL);
}
// Test case evaluating pvt values for BrineDynamic on a GPU and CPU
BOOST_FIXTURE_TEST_CASE(TestBrine_CO2OnGPU, Fixture) {
// use the CO2 tables to aquire the gasDiffCoeffReference at 290[K] and 2e5[Pa]
double gasDiffCoeffReference = CpuBrine_CO2::gasDiffCoeff<Evaluation>(co2Tables, temp, pressure, true).value();
// use the CO2 tables to aquire the viscosity at 290[K] and 2e5[Pa]
double viscosity = Opm::CO2<double, Opm::CO2Tables<double, std::vector<double>>>::gasViscosity<Evaluation>(co2Tables, temp, pressure, true).value();
GpuBufCo2Tables gpuBufCo2Table = Opm::gpuistl::move_to_gpu<double, std::vector<double>, GpuB>(co2Tables);
GpuViewCO2Tables gpuViewCo2Table = Opm::gpuistl::make_view<GpuV>(gpuBufCo2Table);
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(brineCO2GasDiffCoeff, gpuViewCo2Table, gpuTemp, gpuPressure);
// Verify that the CPU and GPU results match within a reasonable tolerance
BOOST_CHECK(std::fabs(gpuComputedResultOnCpu - gasDiffCoeffReference) < ABS_TOL);
}
// Test case evaluating pvt values for BrineDynamic on a GPU and CPU
BOOST_FIXTURE_TEST_CASE(TestCo2GasPvt, Fixture) {
std::vector<double> salinities = {0.2, 0.3, 0.4};
CpuCo2Pvt cpuCo2Pvt(salinities);
double internalEnergyReference = cpuCo2Pvt.internalEnergy<Evaluation>(1, temp, pressure, Evaluation(0.4), Evaluation(0.0)).value();
const GpuBufCo2Pvt gpuBufCo2Pvt = Opm::gpuistl::move_to_gpu<double, GpuBufCo2Tables, GpuB>(cpuCo2Pvt);
const auto brineReferenceDensityCPUCopy = gpuBufCo2Pvt.getBrineReferenceDensity().asStdVector();
const GpuViewCo2Pvt gpuViewCo2Pvt = Opm::gpuistl::make_view<GpuV, GpuViewCO2Tables>(gpuBufCo2Pvt);
gpuComputedResultOnCpu = launchKernelAndRetrieveResult(co2GasPvtInternalEnergy, gpuViewCo2Pvt, gpuTemp, gpuPressure);
// Verify that the CPU and GPU results match within a reasonable tolerance
BOOST_CHECK(compareSignificantDigits(gpuComputedResultOnCpu, internalEnergyReference, 6));
}