Merge pull request #5939 from akva2/output_refactor_fip

OutputBlackoilModule: add a container for the FIP data
This commit is contained in:
Bård Skaflestad
2025-02-03 12:08:00 +01:00
committed by GitHub
6 changed files with 645 additions and 340 deletions

View File

@@ -93,6 +93,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/flow/ConvergenceOutputConfiguration.cpp
opm/simulators/flow/EclGenericWriter.cpp
opm/simulators/flow/ExtraConvergenceOutputThread.cpp
opm/simulators/flow/FIPContainer.cpp
opm/simulators/flow/FlowGenericProblem.cpp
opm/simulators/flow/FlowGenericVanguard.cpp
opm/simulators/flow/FlowProblemParameters.cpp
@@ -816,6 +817,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/flow/ExtraConvergenceOutputThread.hpp
opm/simulators/flow/FemCpGridCompat.hpp
opm/simulators/flow/FIBlackoilModel.hpp
opm/simulators/flow/FIPContainer.hpp
opm/simulators/flow/FlowBaseProblemProperties.hpp
opm/simulators/flow/FlowBaseVanguard.hpp
opm/simulators/flow/FlowGenericProblem.hpp

View File

@@ -0,0 +1,453 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <opm/simulators/flow/FIPContainer.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/output/data/Solution.hpp>
#include <algorithm>
namespace Opm {
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
allocate(const std::size_t bufferSize,
const SummaryConfig& summaryConfig,
const bool forceAlloc,
std::map<std::string, int>& rstKeywords)
{
using namespace std::string_literals;
const auto fipctrl = std::array {
std::pair { "FIP"s , &OutputRestart::noPrefix },
std::pair { "SFIP"s, &OutputRestart::surface },
std::pair { "RFIP"s, &OutputRestart::reservoir },
};
this->outputRestart_.clearBits();
for (const auto& [mnemonic, kind] : fipctrl) {
if (auto fipPos = rstKeywords.find(mnemonic);
fipPos != rstKeywords.end())
{
fipPos->second = 0;
this->outputRestart_.*kind = true;
}
}
bool computeFip = false;
bufferSize_ = bufferSize;
for (const auto& phase : Inplace::phases()) {
if (forceAlloc || summaryConfig.require3DField(Inplace::EclString(phase))) {
this->add(phase);
computeFip = true;
}
else {
this->fip_[phase].clear();
}
}
return computeFip;
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
add(const Inplace::Phase phase)
{
this->fip_[phase].resize(bufferSize_, 0.0);
}
template<class FluidSystem>
const std::vector<typename FIPContainer<FluidSystem>::Scalar>&
FIPContainer<FluidSystem>::
get(const Inplace::Phase phase) const
{
return this->fip_.at(phase);
}
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
has(const Inplace::Phase phase) const
{
const auto it = this->fip_.find(phase);
return it != this->fip_.end() && !it->second.empty();
}
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
hasCo2InGas() const
{
static const auto phases = std::array {
Inplace::Phase::CO2InGasPhaseInMob,
Inplace::Phase::CO2InGasPhaseMob,
Inplace::Phase::CO2MassInGasPhaseInMob,
Inplace::Phase::CO2MassInGasPhaseMob,
Inplace::Phase::CO2Mass,
Inplace::Phase::CO2MassInGasPhase,
Inplace::Phase::CO2InGasPhaseInMobKrg,
Inplace::Phase::CO2InGasPhaseMobKrg,
Inplace::Phase::CO2MassInGasPhaseInMobKrg,
Inplace::Phase::CO2MassInGasPhaseMobKrg,
Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped,
Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped,
Inplace::Phase::CO2MassInGasPhaseMaximumTrapped,
Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped,
};
return std::any_of(phases.begin(), phases.end(),
[this](const auto phase) { return has(phase); });
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignCo2InGas(const unsigned globalDofIdx, const Co2InGasInput& v)
{
const Scalar massGas = (1.0 - v.xgW) * v.pv * v.rhog;
if (this->has(Inplace::Phase::CO2Mass)) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] = massGas * v.sg;
}
if (this->has(Inplace::Phase::CO2MassInGasPhase)) {
this->fip_[Inplace::Phase::CO2MassInGasPhase][globalDofIdx] = massGas * v.sg;
}
if (this->has(Inplace::Phase::CO2InGasPhaseInMob)) {
const Scalar imMobileGas = massGas / v.mM * std::min(v.sgcr , v.sg);
this->fip_[Inplace::Phase::CO2InGasPhaseInMob][globalDofIdx] = imMobileGas;
}
if (this->has(Inplace::Phase::CO2InGasPhaseMob)) {
const Scalar mobileGas = massGas / v.mM * std::max(Scalar{0.0}, v.sg - v.sgcr);
this->fip_[Inplace::Phase::CO2InGasPhaseMob][globalDofIdx] = mobileGas;
}
if (this->has(Inplace::Phase::CO2InGasPhaseInMobKrg)) {
if (v.sgcr >= v.sg) {
const Scalar imMobileGasKrg = massGas / v.mM * v.sg;
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = imMobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (this->has(Inplace::Phase::CO2InGasPhaseMobKrg)) {
if (v.sg > v.sgcr) {
const Scalar mobileGasKrg = massGas / v.mM * v.sg;
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = mobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseInMob)) {
const Scalar imMobileMassGas = massGas * std::min(v.sgcr , v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob][globalDofIdx] = imMobileMassGas;
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseMob)) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.sgcr);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMob][globalDofIdx] = mobileMassGas;
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseInMobKrg)) {
if (v.sgcr >= v.sg) {
const Scalar imMobileMassGasKrg = massGas * v.sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = imMobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseMobKrg)) {
if (v.sg > v.sgcr) {
const Scalar mobileMassGasKrg = massGas * v.sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = mobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseMaximumTrapped)) {
const Scalar imMobileMassGas = massGas * std::min(v.trappedGas, v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped][globalDofIdx] = imMobileMassGas;
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped)) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.trappedGas);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped][globalDofIdx] = mobileMassGas;
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped)) {
const Scalar imMobileMassGas = massGas * std::min(v.strandedGas, v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped][globalDofIdx] = imMobileMassGas;
}
if (this->has(Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped)) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.strandedGas);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped][globalDofIdx] = mobileMassGas;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignGasWater(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip,
const Scalar gasInPlaceWater,
const Scalar waterInPlaceGas)
{
if (this->has(Inplace::Phase::WaterInGasPhase)) {
this->fip_[Inplace::Phase::WaterInGasPhase][globalDofIdx] = waterInPlaceGas;
}
if (this->has(Inplace::Phase::WaterInWaterPhase)) {
this->fip_[Inplace::Phase::WaterInWaterPhase][globalDofIdx] = fip[waterPhaseIdx];
}
// For water+gas cases the gas in water is added to the GIPL value
if (this->has(Inplace::Phase::GasInLiquidPhase) && !FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceWater;
}
// Add dissolved gas and vaporized water to total Fip
if (this->has(Inplace::Phase::WATER)) {
this->fip_[Inplace::Phase::WATER][globalDofIdx] += waterInPlaceGas;
}
if (this->has(Inplace::Phase::GAS)) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceWater;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignVolumesSurface(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) && this->has(Inplace::Phase::OIL)) {
this->fip_[Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && this->has(Inplace::Phase::OilInLiquidPhase)) {
this->fip_[Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && this->has(Inplace::Phase::GAS)) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && this->has(Inplace::Phase::GasInGasPhase)) {
this->fip_[Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && this->has(Inplace::Phase::WATER)) {
this->fip_[Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx];
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignVolumesReservoir(const unsigned globalDofIdx,
const Scalar saltConcentration,
const std::array<Scalar, numPhases>& fipr)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) && this->has(Inplace::Phase::OilResVolume)) {
this->fip_[Inplace::Phase::OilResVolume][globalDofIdx] = fipr[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && this->has(Inplace::Phase::GasResVolume)) {
this->fip_[Inplace::Phase::GasResVolume][globalDofIdx] = fipr[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && this->has(Inplace::Phase::WaterResVolume)) {
this->fip_[Inplace::Phase::WaterResVolume][globalDofIdx] = fipr[waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && this->has(Inplace::Phase::SALT)) {
this->fip_[Inplace::Phase::SALT][globalDofIdx] =
fipr[waterPhaseIdx] * saltConcentration;
}
}
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
hasCo2InWater() const
{
static const auto phases = std::array {
Inplace::Phase::CO2InWaterPhase,
Inplace::Phase::CO2MassInWaterPhase,
Inplace::Phase::CO2Mass,
};
return std::any_of(phases.begin(), phases.end(),
[this](const auto phase) { return has(phase); });
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignCo2InWater(const unsigned globalDofIdx,
const Scalar co2InWater,
const Scalar mM)
{
if (this->has(Inplace::Phase::CO2Mass)) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] += co2InWater * mM;
}
if (this->has(Inplace::Phase::CO2MassInWaterPhase)) {
this->fip_[Inplace::Phase::CO2MassInWaterPhase][globalDofIdx] = co2InWater * mM;
}
if (this->has(Inplace::Phase::CO2InWaterPhase)) {
this->fip_[Inplace::Phase::CO2InWaterPhase][globalDofIdx] = co2InWater;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignOilGasDistribution(const unsigned globalDofIdx,
const Scalar gasInPlaceLiquid,
const Scalar oilInPlaceGas)
{
if (this->has(Inplace::Phase::GasInLiquidPhase)) {
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
}
if (this->has(Inplace::Phase::OilInGasPhase)) {
this->fip_[Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas;
}
// Add dissolved gas and vaporized oil to total Fip
if (this->has(Inplace::Phase::OIL)) {
this->fip_[Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas;
}
if (this->has(Inplace::Phase::GAS)) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
outputRestart(data::Solution& sol)
{
if (!this->outputRestart_) {
return;
}
using namespace std::string_literals;
using M = UnitSystem::measure;
using FIPEntry = std::tuple<std::string, M, Inplace::Phase>;
auto fipArrays = std::vector<FIPEntry> {};
if (this->outputRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"SFIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry {"SFIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry {"SFIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
if (this->outputRestart_.reservoir) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"RFIPOIL"s, M::volume, Inplace::Phase::OilResVolume },
FIPEntry {"RFIPWAT"s, M::volume, Inplace::Phase::WaterResVolume },
FIPEntry {"RFIPGAS"s, M::volume, Inplace::Phase::GasResVolume },
});
}
if (this->outputRestart_.noPrefix && !this->outputRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry { "FIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry { "FIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry { "FIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
for (const auto& [mnemonic, unit, phase] : fipArrays) {
if (! this->fip_[phase].empty()) {
sol.insert(mnemonic, unit, std::move(this->fip_[phase]),
data::TargetType::RESTART_SOLUTION);
}
}
for (const auto& phase : Inplace::mixingPhases()) {
if (! this->fip_[phase].empty()) {
sol.insert(Inplace::EclString(phase),
UnitSystem::measure::volume,
this->fip_[phase],
data::TargetType::SUMMARY);
}
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignPoreVolume(const unsigned globalDofIdx,
const Scalar value)
{
this->fip_[Inplace::Phase::PoreVolume][globalDofIdx] = value;
}
template<class T> using FS = BlackOilFluidSystem<T,BlackOilDefaultIndexTraits>;
#define INSTANTIATE_TYPE(T) \
template class FIPContainer<FS<T>>;
INSTANTIATE_TYPE(double)
#if FLOW_INSTANTIATE_FLOAT
INSTANTIATE_TYPE(float)
#endif
#define INSTANTIATE_COMP(NUM) \
template<class T> using FS##NUM = GenericOilGasFluidSystem<T, NUM>; \
template class FIPContainer<FS##NUM<double>>;
INSTANTIATE_COMP(0)
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)
INSTANTIATE_COMP(5)
INSTANTIATE_COMP(6)
INSTANTIATE_COMP(7)
} // namespace Opm

View File

@@ -0,0 +1,142 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::OutputBlackOilModule
*/
#ifndef OPM_FIP_CONTAINER_HPP
#define OPM_FIP_CONTAINER_HPP
#include <opm/output/eclipse/Inplace.hpp>
#include <array>
#include <cstddef>
#include <map>
#include <unordered_map>
#include <string>
#include <vector>
namespace Opm::data {
class Solution;
}
namespace Opm {
class SummaryConfig;
template<class FluidSystem>
class FIPContainer {
public:
using Scalar = typename FluidSystem::Scalar;
using FIPMap = std::unordered_map<Inplace::Phase, std::vector<Scalar>>;
static constexpr auto numPhases = FluidSystem::numPhases;
static constexpr auto gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr auto oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
bool allocate(const std::size_t bufferSize,
const SummaryConfig& summaryConfig,
const bool forceAlloc,
std::map<std::string, int>& rstKeywords);
void add(const Inplace::Phase phase);
struct Co2InGasInput
{
double pv;
Scalar sg;
Scalar sgcr;
Scalar rhog;
Scalar xgW;
Scalar mM;
Scalar trappedGas;
Scalar strandedGas;
};
const std::vector<Scalar>& get(const Inplace::Phase phase) const;
bool has(const Inplace::Phase phase) const;
bool hasCo2InGas() const;
void assignCo2InGas(const unsigned globalDofIdx,
const Co2InGasInput& v);
bool hasCo2InWater() const;
void assignCo2InWater(const unsigned globalDofIdx,
const Scalar co2InWater,
const Scalar mM);
void assignGasWater(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip,
const Scalar gasInPlaceWater,
const Scalar waterInPlaceGas);
void assignOilGasDistribution(const unsigned globalDofIdx,
const Scalar gasInPlaceLiquid,
const Scalar oilInPlaceGas);
void assignPoreVolume(const unsigned globalDofIdx,
const Scalar value);
void assignVolumesSurface(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip);
void assignVolumesReservoir(const unsigned globalDofIdx,
const Scalar saltConcentration,
const std::array<Scalar, numPhases>& fipr);
void outputRestart(data::Solution& sol);
private:
FIPMap fip_{};
std::size_t bufferSize_ = 0;
struct OutputRestart
{
/// Whether or not run requests (surface condition) fluid-in-place
/// restart file output using the 'FIP' mnemonic.
bool noPrefix {false};
/// Whether or not run requests surface condition fluid-in-place
/// restart file output using the 'SFIP' mnemonic.
bool surface {false};
/// Whether or not run requests reservoir condition fluid-in-place
/// restart file output using the 'RFIP' mnemonic.
bool reservoir {false};
void clearBits()
{
this->noPrefix = this->surface = this->reservoir = false;
}
explicit operator bool() const
{
return this->noPrefix || this->surface || this->reservoir;
}
} outputRestart_{};
};
} // namespace Opm
#endif // OPM_FIP_CONTAINER_HPP

View File

@@ -696,53 +696,7 @@ assignToSolution(data::Solution& sol)
}
// Fluid in place
if (this->outputFipRestart_) {
using namespace std::string_literals;
using M = UnitSystem::measure;
using FIPEntry = std::tuple<std::string, M, Inplace::Phase>;
auto fipArrays = std::vector<FIPEntry> {};
if (this->outputFipRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"SFIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry {"SFIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry {"SFIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
if (this->outputFipRestart_.reservoir) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"RFIPOIL"s, M::volume, Inplace::Phase::OilResVolume },
FIPEntry {"RFIPWAT"s, M::volume, Inplace::Phase::WaterResVolume },
FIPEntry {"RFIPGAS"s, M::volume, Inplace::Phase::GasResVolume },
});
}
if (this->outputFipRestart_.noPrefix && !this->outputFipRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry { "FIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry { "FIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry { "FIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
for (const auto& [mnemonic, unit, phase] : fipArrays) {
if (! this->fip_[phase].empty()) {
sol.insert(mnemonic, unit, std::move(this->fip_[phase]),
data::TargetType::RESTART_SOLUTION);
}
}
for (const auto& phase : Inplace::mixingPhases()) {
if (! this->fip_[phase].empty()) {
sol.insert(Inplace::EclString(phase),
UnitSystem::measure::volume,
this->fip_[phase],
data::TargetType::SUMMARY);
}
}
}
this->fipC_.outputRestart(sol);
// Tracers
if (! this->freeTracerConcentrations_.empty()) {
@@ -925,37 +879,10 @@ doAllocBuffers(const unsigned bufferSize,
}
// Fluid in place
{
using namespace std::string_literals;
const auto fipctrl = std::array {
std::pair { "FIP"s , &OutputFIPRestart::noPrefix },
std::pair { "SFIP"s, &OutputFIPRestart::surface },
std::pair { "RFIP"s, &OutputFIPRestart::reservoir },
};
this->outputFipRestart_.clearBits();
this->computeFip_ = false;
for (const auto& [mnemonic, kind] : fipctrl) {
if (auto fipPos = rstKeywords.find(mnemonic);
fipPos != rstKeywords.end())
{
fipPos->second = 0;
this->outputFipRestart_.*kind = true;
}
}
for (const auto& phase : Inplace::phases()) {
if (!substep || summaryConfig_.require3DField(Inplace::EclString(phase))) {
this->fip_[phase].resize(bufferSize, 0.0);
this->computeFip_ = true;
}
else {
this->fip_[phase].clear();
}
}
}
this->computeFip_ = this->fipC_.allocate(bufferSize,
summaryConfig_,
!substep,
rstKeywords);
const auto needAvgPress = !substep ||
!this->RPRNodes_.empty() ||
@@ -967,7 +894,7 @@ doAllocBuffers(const unsigned bufferSize,
this->summaryConfig_.match("RHPV*");
if (needPoreVolume) {
this->fip_[Inplace::Phase::PoreVolume].resize(bufferSize, 0.0);
this->fipC_.add(Inplace::Phase::PoreVolume);
this->dynamicPoreVolume_.resize(bufferSize, 0.0);
this->hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
}
@@ -1590,10 +1517,7 @@ makeRegionSum(Inplace& inplace,
this->dynamicPoreVolume_);
for (const auto& phase : Inplace::phases()) {
auto fipPos = this->fip_.find(phase);
if (fipPos != this->fip_.end()) {
update_inplace(phase, fipPos->second);
}
update_inplace(phase, this->fipC_.get(phase));
}
}

View File

@@ -32,6 +32,7 @@
#include <opm/output/data/Wells.hpp>
#include <opm/output/eclipse/Inplace.hpp>
#include <opm/simulators/flow/FIPContainer.hpp>
#include <opm/simulators/flow/FlowsData.hpp>
#include <opm/simulators/flow/InterRegFlows.hpp>
#include <opm/simulators/flow/LogOutputHelper.hpp>
@@ -429,30 +430,6 @@ protected:
bool forceDisableFipresvOutput_{false};
bool computeFip_{false};
struct OutputFIPRestart {
/// Whether or not run requests (surface condition) fluid-in-place
/// restart file output using the 'FIP' mnemonic.
bool noPrefix {false};
/// Whether or not run requests surface condition fluid-in-place
/// restart file output using the 'SFIP' mnemonic.
bool surface {false};
/// Whether or not run requests reservoir condition fluid-in-place
/// restart file output using the 'RFIP' mnemonic.
bool reservoir {false};
void clearBits()
{
this->noPrefix = this->surface = this->reservoir = false;
}
explicit operator bool() const
{
return this->noPrefix || this->surface || this->reservoir;
}
} outputFipRestart_{};
bool anyFlows_{false};
bool anyFlores_{false};
bool blockFlows_{false};
@@ -461,7 +438,7 @@ protected:
bool enableFlowsn_{false};
bool enableFloresn_{false};
std::unordered_map<Inplace::Phase, ScalarBuffer> fip_;
FIPContainer<FluidSystem> fipC_;
std::unordered_map<std::string, std::vector<int>> regions_;
std::unordered_map<Inplace::Phase, std::vector<SummaryConfigNode>> regionNodes_;

View File

@@ -1427,8 +1427,8 @@ private:
const auto hydrocarbon = this->hydroCarbonFraction(fs);
if (! this->hydrocarbonPoreVolume_.empty()) {
this->fip_[Inplace::Phase::PoreVolume][globalDofIdx] =
totVolume * intQuants.referencePorosity();
this->fipC_.assignPoreVolume(globalDofIdx,
totVolume * intQuants.referencePorosity());
this->dynamicPoreVolume_[globalDofIdx] = pv;
this->hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon;
@@ -1438,7 +1438,7 @@ private:
!this->pressureTimesPoreVolume_.empty())
{
assert(this->hydrocarbonPoreVolume_.size() == this->pressureTimesHydrocarbonVolume_.size());
assert(this->fip_[Inplace::Phase::PoreVolume].size() == this->pressureTimesPoreVolume_.size());
assert(this->fipC_.get(Inplace::Phase::PoreVolume).size() == this->pressureTimesPoreVolume_.size());
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->pressureTimesPoreVolume_[globalDofIdx] =
@@ -1483,8 +1483,10 @@ private:
fip [phaseIdx] = b * fipr[phaseIdx];
}
this->updateInplaceVolumesSurface(globalDofIdx, fip);
this->updateInplaceVolumesReservoir(globalDofIdx, fs, fipr);
this->fipC_.assignVolumesSurface(globalDofIdx, fip);
this->fipC_.assignVolumesReservoir(globalDofIdx,
fs.saltConcentration().value(),
fipr);
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
FluidSystem::phaseIsActive(gasPhaseIdx))
@@ -1499,27 +1501,12 @@ private:
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
(!this->fip_[Inplace::Phase::CO2InGasPhaseInMob].empty() ||
!this->fip_[Inplace::Phase::CO2InGasPhaseMob].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseMob].empty() ||
!this->fip_[Inplace::Phase::CO2Mass].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhase].empty() ||
!this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg].empty() ||
!this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped].empty()))
this->fipC_.hasCo2InGas())
{
this->updateCO2InGas(globalDofIdx, pv, intQuants);
}
if ((!this->fip_[Inplace::Phase::CO2InWaterPhase].empty() ||
!this->fip_[Inplace::Phase::CO2MassInWaterPhase].empty() ||
!this->fip_[Inplace::Phase::CO2Mass].empty()) &&
if (this->fipC_.hasCo2InWater() &&
(FluidSystem::phaseIsActive(waterPhaseIdx) ||
FluidSystem::phaseIsActive(oilPhaseIdx)))
{
@@ -1527,72 +1514,6 @@ private:
}
}
template <typename FIPArray>
void updateInplaceVolumesSurface(const unsigned globalDofIdx,
const FIPArray& fip)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OIL].empty())
{
this->fip_[Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OilInLiquidPhase].empty())
{
this->fip_[Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GAS].empty())
{
this->fip_[Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GasInGasPhase].empty())
{
this->fip_[Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::WATER].empty())
{
this->fip_[Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx];
}
}
template <typename FluidState, typename FIPArray>
void updateInplaceVolumesReservoir(const unsigned globalDofIdx,
const FluidState& fs,
const FIPArray& fipr)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OilResVolume].empty())
{
this->fip_[Inplace::Phase::OilResVolume][globalDofIdx] = fipr[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GasResVolume].empty())
{
this->fip_[Inplace::Phase::GasResVolume][globalDofIdx] = fipr[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::WaterResVolume].empty())
{
this->fip_[Inplace::Phase::WaterResVolume][globalDofIdx] = fipr[waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::SALT].empty())
{
this->fip_[Inplace::Phase::SALT][globalDofIdx] =
fipr[waterPhaseIdx] * fs.saltConcentration().value();
}
}
template <typename FluidState, typename FIPArray>
void updateOilGasDistribution(const unsigned globalDofIdx,
const FluidState& fs,
@@ -1602,22 +1523,7 @@ private:
const auto gasInPlaceLiquid = getValue(fs.Rs()) * fip[oilPhaseIdx];
const auto oilInPlaceGas = getValue(fs.Rv()) * fip[gasPhaseIdx];
if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty()) {
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
}
if (!this->fip_[Inplace::Phase::OilInGasPhase].empty()) {
this->fip_[Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas;
}
// Add dissolved gas and vaporized oil to total Fip
if (!this->fip_[Inplace::Phase::OIL].empty()) {
this->fip_[Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas;
}
if (!this->fip_[Inplace::Phase::GAS].empty()) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid;
}
this->fipC_.assignOilGasDistribution(globalDofIdx, gasInPlaceLiquid, oilInPlaceGas);
}
template <typename FluidState, typename FIPArray>
@@ -1629,29 +1535,7 @@ private:
const auto gasInPlaceWater = getValue(fs.Rsw()) * fip[waterPhaseIdx];
const auto waterInPlaceGas = getValue(fs.Rvw()) * fip[gasPhaseIdx];
if (!this->fip_[Inplace::Phase::WaterInGasPhase].empty()) {
this->fip_[Inplace::Phase::WaterInGasPhase][globalDofIdx] = waterInPlaceGas;
}
if (!this->fip_[Inplace::Phase::WaterInWaterPhase].empty()) {
this->fip_[Inplace::Phase::WaterInWaterPhase][globalDofIdx] = fip[waterPhaseIdx];
}
// For water+gas cases the gas in water is added to the GIPL value
if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty() &&
!FluidSystem::phaseIsActive(oilPhaseIdx))
{
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceWater;
}
// Add dissolved gas and vaporized water to total Fip
if (!this->fip_[Inplace::Phase::WATER].empty()) {
this->fip_[Inplace::Phase::WATER][globalDofIdx] += waterInPlaceGas;
}
if (!this->fip_[Inplace::Phase::GAS].empty()) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceWater;
}
this->fipC_.assignGasWater(globalDofIdx, fip, gasInPlaceWater, waterInPlaceGas);
}
template <typename IntensiveQuantities>
@@ -1669,113 +1553,43 @@ private:
sgcr = MaterialLaw::trappedGasSaturation(matParams, /*maximumTrapping*/false);
}
const Scalar sg = getValue(fs.saturation(gasPhaseIdx));
const Scalar rhog = getValue(fs.density(gasPhaseIdx));
const Scalar xgW = FluidSystem::phaseIsActive(waterPhaseIdx)
? FluidSystem::convertRvwToXgW(getValue(fs.Rvw()), fs.pvtRegionIndex())
: FluidSystem::convertRvToXgO(getValue(fs.Rv()), fs.pvtRegionIndex());
const Scalar mM = FluidSystem::molarMass(gasCompIdx, fs.pvtRegionIndex());
const Scalar massGas = (1 - xgW) * pv * rhog;
if (!this->fip_[Inplace::Phase::CO2Mass].empty()) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] = massGas * sg;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhase].empty()) {
this->fip_[Inplace::Phase::CO2MassInGasPhase][globalDofIdx] = massGas * sg;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseInMob].empty()) {
const Scalar imMobileGas = massGas / mM * std::min(sgcr , sg);
this->fip_[Inplace::Phase::CO2InGasPhaseInMob][globalDofIdx] = imMobileGas;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseMob].empty()) {
const Scalar mobileGas = massGas / mM * std::max(Scalar{0.0}, sg - sgcr);
this->fip_[Inplace::Phase::CO2InGasPhaseMob][globalDofIdx] = mobileGas;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg].empty()) {
if (sgcr >= sg) {
const Scalar imMobileGasKrg = massGas / mM * sg;
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = imMobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg].empty()) {
if (sg > sgcr) {
const Scalar mobileGasKrg = massGas / mM * sg;
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = mobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob].empty()) {
const Scalar imMobileMassGas = massGas * std::min(sgcr , sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMob].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, sg - sgcr);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMob][globalDofIdx] = mobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg].empty()) {
if (sgcr >= sg) {
const Scalar imMobileMassGasKrg = massGas * sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = imMobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg].empty()) {
if (sg > sgcr) {
const Scalar mobileMassGasKrg = massGas * sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = mobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped].empty() ) {
Scalar trappedGasSaturation = scaledDrainageInfo.Sgcr;
Scalar trappedGasSaturation = scaledDrainageInfo.Sgcr;
if (this->fipC_.has(Inplace::Phase::CO2MassInGasPhaseMaximumTrapped) ||
this->fipC_.has(Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped))
{
if (this->simulator_.problem().materialLawManager()->enableHysteresis()) {
const auto& matParams = simulator_.problem().materialLawParams(globalDofIdx);
// Get the maximum trapped gas saturation
// Get the maximum trapped gas saturation
trappedGasSaturation = MaterialLaw::trappedGasSaturation(matParams, /*maximumTrapping*/true);
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped].empty()) {
const Scalar imMobileMassGas = massGas * std::min(trappedGasSaturation , sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, sg - trappedGasSaturation);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped][globalDofIdx] = mobileMassGas;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped].empty() ||
!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped].empty()) {
Scalar trappedGasSaturation = scaledDrainageInfo.Sgcr;
const Scalar sg = getValue(fs.saturation(gasPhaseIdx));
Scalar strandedGasSaturation = scaledDrainageInfo.Sgcr;
if (this->fipC_.has(Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped) ||
this->fipC_.has(Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped))
{
if (this->simulator_.problem().materialLawManager()->enableHysteresis()) {
const auto& matParams = simulator_.problem().materialLawParams(globalDofIdx);
const double krg = getValue(intQuants.relativePermeability(gasPhaseIdx));
trappedGasSaturation = MaterialLaw::strandedGasSaturation(matParams, sg, krg);
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped].empty()) {
const Scalar imMobileMassGas = massGas * std::min(trappedGasSaturation , sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, sg - trappedGasSaturation);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped][globalDofIdx] = mobileMassGas;
strandedGasSaturation = MaterialLaw::strandedGasSaturation(matParams, sg, krg);
}
}
const typename FIPContainer<FluidSystem>::Co2InGasInput v{
pv,
sg,
sgcr,
getValue(fs.density(gasPhaseIdx)),
FluidSystem::phaseIsActive(waterPhaseIdx)
? FluidSystem::convertRvwToXgW(getValue(fs.Rvw()), fs.pvtRegionIndex())
: FluidSystem::convertRvToXgO(getValue(fs.Rv()), fs.pvtRegionIndex()),
FluidSystem::molarMass(gasCompIdx, fs.pvtRegionIndex()),
trappedGasSaturation,
strandedGasSaturation,
};
this->fipC_.assignCo2InGas(globalDofIdx, v);
}
template <typename FluidState>
@@ -1788,15 +1602,8 @@ private:
: this->co2InWaterFromWater(fs, pv);
const Scalar mM = FluidSystem::molarMass(gasCompIdx, fs.pvtRegionIndex());
if (!this->fip_[Inplace::Phase::CO2Mass].empty()) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] += co2InWater * mM;
}
if (!this->fip_[Inplace::Phase::CO2MassInWaterPhase].empty()) {
this->fip_[Inplace::Phase::CO2MassInWaterPhase][globalDofIdx] = co2InWater * mM;
}
if (!this->fip_[Inplace::Phase::CO2InWaterPhase].empty()) {
this->fip_[Inplace::Phase::CO2InWaterPhase][globalDofIdx] = co2InWater;
}
this->fipC_.assignCo2InWater(globalDofIdx, co2InWater, mM);
}
template <typename FluidState>