move getGroupProductionControl into WellGroupControls

This commit is contained in:
Arne Morten Kvarving
2022-10-19 09:55:14 +02:00
parent cfd0eda7de
commit cdbeef0a3e
4 changed files with 138 additions and 105 deletions

View File

@@ -176,6 +176,108 @@ getGroupInjectionControl(const Group& group,
control_eq = current_rate - target_rate;
}
template<class EvalWell>
void WellGroupControls::getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
const RateConvFunc& rateConverter,
double efficiencyFactor,
EvalWell& control_eq) const
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_.wellEcl().productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), well_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, group_state,
schedule, summaryState, bhp,
rates, rateConverter,
efficiencyFactor, control_eq);
return;
}
}
const auto& well = well_.wellEcl();
const auto pu = well_.phaseUsage();
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(well_.phaseUsage().num_phases, 1.0);
rateConverter(0, well_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff,
gratTargetFromSales, group.name(),
group_state,
group.has_gpmaint_control(currentGroupControl));
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state,
well_.currentStep(),
well_.guideRate(),
tcalc.guideTargetMode(),
pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child);
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = WellGroupHelpers::groupChainTopBot(well_.name(), group.name(),
schedule, well_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || well_.guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
#define INSTANCE(...) \
template void WellGroupControls:: \
getGroupInjectionControl<__VA_ARGS__>(const Group&, \
@@ -189,7 +291,18 @@ getGroupInjectionControl<__VA_ARGS__>(const Group&, \
const RateConvFunc& rateConverter, \
double efficiencyFactor, \
__VA_ARGS__& control_eq, \
DeferredLogger& deferred_logger) const;
DeferredLogger& deferred_logger) const; \
template void WellGroupControls:: \
getGroupProductionControl<__VA_ARGS__>(const Group&, \
const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const __VA_ARGS__& bhp, \
const std::vector<__VA_ARGS__>&, \
const RateConvFunc& rateConverter, \
double efficiencyFactor, \
__VA_ARGS__& control_eq) const;
INSTANCE(DenseAd::Evaluation<double,3,0u>)
INSTANCE(DenseAd::Evaluation<double,4,0u>)

View File

@@ -62,6 +62,18 @@ public:
EvalWell& control_eq,
DeferredLogger& deferred_logger) const;
template<class EvalWell>
void getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
const RateConvFunc& rateConverter,
double efficiencyFactor,
EvalWell& control_eq) const;
private:
const WellInterfaceGeneric& well_; //!< Reference to well interface
};

View File

@@ -49,99 +49,6 @@ WellInterfaceEval(const WellInterfaceFluidSystem<FluidSystem>& baseif)
: baseif_(baseif)
{}
template<class FluidSystem>
template<class EvalWell>
void
WellInterfaceEval<FluidSystem>::
getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
EvalWell& control_eq,
double efficiencyFactor) const
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = baseif_.wellEcl().productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), baseif_.currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, group_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
return;
}
}
const auto& well = baseif_.wellEcl();
const auto pu = baseif_.phaseUsage();
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a valid control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(baseif_.phaseUsage().num_phases, 1.0);
baseif_.rateConverter().calcCoeff(0, baseif_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl));
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, baseif_.currentStep(), baseif_.guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child);
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = WellGroupHelpers::groupChainTopBot(baseif_.name(), group.name(), schedule, baseif_.currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || baseif_.guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
template<class FluidSystem>
template<class EvalWell>
void
@@ -244,7 +151,18 @@ assembleControlEqProd_(const WellState& well_state,
active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase];
}
}
getGroupProductionControl(group, well_state, group_state, schedule, summaryState, bhp, active_rates, control_eq, efficiencyFactor);
auto rCoeff = [this](const RegionId id, const int region, std::vector<double>& coeff)
{
baseif_.rateConverter().calcCoeff(id, region, coeff);
};
WellGroupControls(baseif_).getGroupProductionControl(group, well_state,
group_state,
schedule,
summaryState,
bhp, active_rates,
rCoeff,
efficiencyFactor,
control_eq);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED: {

View File

@@ -56,16 +56,6 @@ public:
const SummaryState& summaryState,
const double rho,
DeferredLogger& deferred_logger) const;
template<class EvalWell>
void getGroupProductionControl(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
EvalWell& control_eq,
double efficiencyFactor) const;
template<class EvalWell, class BhpFromThpFunc>
void assembleControlEqProd(const WellState& well_state,