make the fracture problem compile again

it broke because of the recent refactoring of the energy material laws
in opm-material. The reason why nobody noticed is that this test
requires dune-alugrid to be compiled.
This commit is contained in:
Andreas Lauser
2018-01-03 15:17:37 +01:00
parent 5a3f25d120
commit ce6499a39b

View File

@@ -45,7 +45,8 @@
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/heatconduction/Somerton.hpp>
#include <opm/material/thermal/SomertonHeatConductionLaw.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
@@ -135,9 +136,13 @@ private:
public:
// define the material law parameterized by absolute saturations
typedef Opm::Somerton<FluidSystem, Scalar> type;
typedef Opm::SomertonHeatConductionLaw<FluidSystem, Scalar> type;
};
// set the heat law for the solid phase
SET_TYPE_PROP(FractureProblem, SolidEnergyLaw,
Opm::ConstantSolidHeatCapLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Disable gravity
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
@@ -186,6 +191,7 @@ class FractureProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
@@ -273,7 +279,7 @@ public:
fractureWidth_ = 1e-3; // [m]
// parameters for the somerton law of heat conduction
computeHeatCondParams_(heatCondParams_, matrixPorosity_);
initThermalParams_(heatCondParams_, matrixPorosity_);
}
/*!
@@ -414,28 +420,26 @@ public:
{ return fractureWidth_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams &
heatConductionParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return heatCondParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
* \brief Return the parameters for the heat storage law of the rock
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
Scalar heatCapacitySolid(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
return 790 // specific heat capacity of granite [J / (kg K)]
* 2700; // density of granite [kg/m^3]
}
const SolidEnergyLawParams&
solidHeatLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return solidHeatLawParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams &
heatConductionLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return heatCondParams_; }
// \}
@@ -577,8 +581,13 @@ private:
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
void computeHeatCondParams_(HeatConductionLawParams& params, Scalar poro)
void initThermalParams_(HeatConductionLawParams& params, Scalar poro)
{
// assume the volumetric heat capacity of granite
solidHeatLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidHeatLawParams_.finalize();
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
@@ -625,6 +634,7 @@ private:
MaterialLawParams matrixMaterialParams_;
HeatConductionLawParams heatCondParams_;
SolidEnergyLawParams solidHeatLawParams_;
Scalar temperature_;
Scalar eps_;