mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
moved the utility classes to opm-core.
This commit is contained in:
parent
faf191b9f1
commit
d4802121d3
@ -28,7 +28,6 @@
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
#include <opm/autodiff/TimeStepControl.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/wells.h>
|
||||
@ -47,6 +46,7 @@
|
||||
#include <opm/core/props/rock/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/AdaptiveTimeStepping.hpp>
|
||||
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
|
||||
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
||||
@ -54,6 +54,7 @@
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/WellProductionProperties.hpp>
|
||||
|
||||
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
@ -294,12 +295,14 @@ namespace Opm
|
||||
std::string tstep_filename = output_dir_ + "/step_timing.txt";
|
||||
std::ofstream tstep_os(tstep_filename.c_str());
|
||||
|
||||
double lastSubStep = timer.currentStepLength();
|
||||
|
||||
typename FullyImplicitBlackoilSolver<T>::SolverParameter solverParam( param_ );
|
||||
|
||||
// sub stepping flag, if false just the normal time steps will be used
|
||||
const bool subStepping = param_.getDefault("substepping", bool(false) );
|
||||
// sub stepping
|
||||
std::unique_ptr< AdaptiveTimeStepping > subStepping;
|
||||
if( param_.getDefault("timestep.adaptive", bool(false) ) )
|
||||
{
|
||||
subStepping = std::unique_ptr< AdaptiveTimeStepping > (new AdaptiveTimeStepping( param_ ));
|
||||
}
|
||||
|
||||
// create time step control object, TODO introduce parameter
|
||||
std::unique_ptr< TimeStepControlInterface >
|
||||
@ -362,74 +365,12 @@ namespace Opm
|
||||
|
||||
// If sub stepping is enabled allow the solver to sub cycle
|
||||
// in case the report steps are to large for the solver to converge
|
||||
// \Note: The report steps are met in any case
|
||||
if( subStepping )
|
||||
{
|
||||
// create sub step simulator timer with previously used sub step size
|
||||
const double start_time = timer.simulationTimeElapsed();
|
||||
const double end_time = start_time + timer.currentStepLength();
|
||||
AdaptiveSimulatorTimer subStepper( start_time, end_time, lastSubStep );
|
||||
|
||||
// copy states in case solver has to be restarted (to be revised)
|
||||
BlackoilState last_state( state );
|
||||
WellStateFullyImplicitBlackoil last_well_state( well_state );
|
||||
|
||||
// sub step time loop
|
||||
while( ! subStepper.done() )
|
||||
{
|
||||
// initialize time step control in case current state is needed later
|
||||
timeStepControl->initialize( state );
|
||||
|
||||
int linearIterations = -1;
|
||||
try {
|
||||
// (linearIterations < 0 means on convergence in solver)
|
||||
linearIterations = solver.step(subStepper.currentStepLength(), state, well_state);
|
||||
|
||||
// report number of linear iterations
|
||||
std::cout << "Overall linear iterations used: " << linearIterations << std::endl;
|
||||
}
|
||||
catch (Opm::NumericalProblem)
|
||||
{
|
||||
// since linearIterations is < 0 this will restart the solver
|
||||
}
|
||||
|
||||
// (linearIterations < 0 means on convergence in solver)
|
||||
if( linearIterations >= 0 )
|
||||
{
|
||||
// advance by current dt
|
||||
subStepper.advance();
|
||||
|
||||
// compute new time step estimate
|
||||
const double dtEstimate =
|
||||
timeStepControl->computeTimeStepSize( subStepper.currentStepLength(), linearIterations, state );
|
||||
std::cout << "Suggested time step size = " << dtEstimate/86400.0 << " (days)" << std::endl;
|
||||
|
||||
// set new time step length
|
||||
subStepper.provideTimeStepEstimate( dtEstimate );
|
||||
|
||||
// update states
|
||||
last_state = state ;
|
||||
last_well_state = well_state;
|
||||
}
|
||||
else // in case of no convergence
|
||||
{
|
||||
// we need to revise this
|
||||
subStepper.provideTimeStepEstimate( 0.1 * subStepper.currentStepLength() );
|
||||
std::cerr << "Solver convergence failed, restarting solver with half time step ("<< subStepper.currentStepLength()<<" days)." << std::endl;
|
||||
// reset states
|
||||
state = last_state;
|
||||
well_state = last_well_state;
|
||||
}
|
||||
}
|
||||
|
||||
subStepper.report( std::cout );
|
||||
|
||||
// store last small time step for next reportStep
|
||||
lastSubStep = subStepper.suggestedAverage();
|
||||
std::cout << "Last suggested step size = " << lastSubStep/86400.0 << " (days)" << std::endl;
|
||||
|
||||
if( ! std::isfinite( lastSubStep ) ) // check for NaN
|
||||
lastSubStep = timer.currentStepLength();
|
||||
//
|
||||
// \Note: The report steps are met in any case
|
||||
// \Note: The sub stepping will require a copy of the state variables
|
||||
if( subStepping ) {
|
||||
subStepping->step( solver, state, well_state,
|
||||
timer.simulationTimeElapsed(), timer.currentStepLength() );
|
||||
}
|
||||
else {
|
||||
// solve for complete report step
|
||||
|
@ -1,191 +0,0 @@
|
||||
/*
|
||||
Copyright 2014 IRIS AS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef OPM_TIMESTEPCONTROL_HEADER_INCLUDED
|
||||
#define OPM_TIMESTEPCONTROL_HEADER_INCLUDED
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// TimeStepControlInterface
|
||||
///
|
||||
///////////////////////////////////////////////////////////////////
|
||||
class TimeStepControlInterface
|
||||
{
|
||||
protected:
|
||||
TimeStepControlInterface() {}
|
||||
public:
|
||||
/// \param state simulation state before computing update in the solver (default is empty)
|
||||
virtual void initialize( const SimulatorState& state ) {}
|
||||
|
||||
/// compute new time step size suggestions based on the PID controller
|
||||
/// \param dt time step size used in the current step
|
||||
/// \param iterations number of iterations used (linear/nonlinear)
|
||||
/// \param state new solution state
|
||||
///
|
||||
/// \return suggested time step size for the next step
|
||||
virtual double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& ) const = 0;
|
||||
|
||||
/// virtual destructor (empty)
|
||||
virtual ~TimeStepControlInterface () {}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// PID controller based adaptive time step control as suggested in:
|
||||
/// Turek and Kuzmin. Algebraic Flux Correction III. Incompressible Flow Problems. Uni Dortmund.
|
||||
///
|
||||
/// See also:
|
||||
/// D. Kuzmin and S.Turek. Numerical simulation of turbulent bubbly flows. Techreport Uni Dortmund. 2004
|
||||
///
|
||||
/// and the original article:
|
||||
/// Valli, Coutinho, and Carey. Adaptive Control for Time Step Selection in Finite Element
|
||||
/// Simulation of Coupled Viscous Flow and Heat Transfer. Proc of the 10th
|
||||
/// International Conference on Numerical Methods in Fluids. 1998.
|
||||
///
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
class PIDTimeStepControl : public TimeStepControlInterface
|
||||
{
|
||||
protected:
|
||||
mutable std::vector<double> p0_;
|
||||
mutable std::vector<double> sat0_;
|
||||
|
||||
const double tol_;
|
||||
mutable std::vector< double > errors_;
|
||||
|
||||
const bool verbose_;
|
||||
public:
|
||||
/// \brief constructor
|
||||
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
|
||||
/// in one time step (default is 1e-3)
|
||||
PIDTimeStepControl( const double tol = 1e-3, const bool verbose = false )
|
||||
: p0_()
|
||||
, sat0_()
|
||||
, tol_( tol )
|
||||
, errors_( 3, tol_ )
|
||||
, verbose_( verbose )
|
||||
{}
|
||||
|
||||
/// \brief \copydoc TimeStepControlInterface::initialize
|
||||
void initialize( const SimulatorState& state )
|
||||
{
|
||||
// store current state for later time step computation
|
||||
p0_ = state.pressure();
|
||||
sat0_ = state.saturation();
|
||||
}
|
||||
|
||||
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
|
||||
double computeTimeStepSize( const double dt, const int /* iterations */, const SimulatorState& state ) const
|
||||
{
|
||||
const size_t size = p0_.size();
|
||||
assert( state.pressure().size() == size );
|
||||
assert( state.saturation().size() == size );
|
||||
assert( sat0_.size() == size );
|
||||
|
||||
// compute u^n - u^n+1
|
||||
for( size_t i=0; i<size; ++i )
|
||||
{
|
||||
p0_[ i ] -= state.pressure()[ i ];
|
||||
sat0_[ i ] -= state.saturation()[ i ];
|
||||
}
|
||||
|
||||
// compute || u^n - u^n+1 ||
|
||||
const double stateOld = inner_product( p0_.begin(), p0_.end() ) +
|
||||
inner_product( sat0_.begin(), sat0_.end() );
|
||||
|
||||
// compute || u^n+1 ||
|
||||
const double stateNew = inner_product( state.pressure().begin(), state.pressure().end() ) +
|
||||
inner_product( state.saturation().begin(), state.saturation().end() );
|
||||
|
||||
// shift errors
|
||||
for( int i=0; i<2; ++i )
|
||||
errors_[ i ] = errors_[i+1];
|
||||
|
||||
// store new error
|
||||
const double error = stateOld / stateNew;
|
||||
errors_[ 2 ] = error ;
|
||||
|
||||
if( error > tol_ )
|
||||
{
|
||||
// adjust dt by given tolerance
|
||||
if( verbose_ )
|
||||
std::cout << "Computed step size (tol): " << (dt * tol_ / error )/86400.0 << " (days)" << std::endl;
|
||||
return (dt * tol_ / error );
|
||||
}
|
||||
else
|
||||
{
|
||||
// values taking from turek time stepping paper
|
||||
const double kP = 0.075 ;
|
||||
const double kI = 0.175 ;
|
||||
const double kD = 0.01 ;
|
||||
double newDt = (dt * std::pow( errors_[ 1 ] / errors_[ 2 ], kP ) *
|
||||
std::pow( tol_ / errors_[ 2 ], kI ) *
|
||||
std::pow( errors_[0]*errors_[0]/errors_[ 1 ]/errors_[ 2 ], kD ));
|
||||
if( verbose_ )
|
||||
std::cout << "Computed step size (pow): " << newDt/86400.0 << " (days)" << std::endl;
|
||||
return newDt;
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
// return inner product for given container, here std::vector
|
||||
template <class Iterator>
|
||||
double inner_product( Iterator it, const Iterator end ) const
|
||||
{
|
||||
double product = 0.0 ;
|
||||
for( ; it != end; ++it )
|
||||
product += ( *it * *it );
|
||||
return product;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class PIDAndIterationCountTimeStepControl : public PIDTimeStepControl
|
||||
{
|
||||
typedef PIDTimeStepControl BaseType;
|
||||
protected:
|
||||
const int targetIterationCount_;
|
||||
|
||||
public:
|
||||
explicit PIDAndIterationCountTimeStepControl( const int target_iterations = 20,
|
||||
const double tol = 1e-3,
|
||||
const bool verbose = false)
|
||||
: BaseType( tol, verbose )
|
||||
, targetIterationCount_( target_iterations )
|
||||
{}
|
||||
|
||||
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& state ) const
|
||||
{
|
||||
double dtEstimate = BaseType :: computeTimeStepSize( dt, iterations, state );
|
||||
|
||||
// further reduce step size if to many iterations were used
|
||||
if( iterations > targetIterationCount_ )
|
||||
{
|
||||
// if iterations was the same or dts were the same, do some magic
|
||||
dtEstimate *= double( targetIterationCount_ ) / double(iterations);
|
||||
}
|
||||
|
||||
return dtEstimate;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // end namespace OPM
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user