mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-01 03:56:55 -06:00
Merge branch 'master' into oscillation_treatment_withlimitedupdate
Conflicts: opm/autodiff/FullyImplicitBlackoilSolver.hpp
This commit is contained in:
commit
d7aa21dc03
@ -75,7 +75,7 @@ if (NOT EIGEN3_FOUND)
|
||||
include (ExternalProject)
|
||||
externalProject_Add (Eigen3
|
||||
GIT_REPOSITORY git://github.com/OPM/eigen3
|
||||
UPDATE_COMMAND git checkout 9f6cc779c101b87184076322603f496e5fdd0432
|
||||
UPDATE_COMMAND git checkout 9e788db99d73f3199ade74bfda8d9f73fdfbbe4c
|
||||
CMAKE_ARGS -DEIGEN_TEST_NO_OPENGL=1 -DEIGEN_BUILD_PKGCONFIG=0 -DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}/eigen3-installed
|
||||
)
|
||||
|
||||
|
@ -28,6 +28,7 @@
|
||||
list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/BlackoilPropsAd.cpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilCPR.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.cpp
|
||||
opm/autodiff/GridHelpers.cpp
|
||||
opm/autodiff/ImpesTPFAAD.cpp
|
||||
@ -93,11 +94,13 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/BlackoilPropsAd.hpp
|
||||
opm/autodiff/BlackoilPropsAdFromDeck.hpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.hpp
|
||||
opm/autodiff/CPRPreconditioner.hpp
|
||||
opm/autodiff/GeoProps.hpp
|
||||
opm/autodiff/GridHelpers.hpp
|
||||
opm/autodiff/ImpesTPFAAD.hpp
|
||||
opm/autodiff/FullyImplicitBlackoilSolver.hpp
|
||||
opm/autodiff/FullyImplicitBlackoilSolver_impl.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilCPR.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilInterface.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.hpp
|
||||
opm/autodiff/LinearisedBlackoilResidual.hpp
|
||||
|
@ -21,5 +21,5 @@ set (opm-autodiff_DEPS
|
||||
dune-cornerpoint;
|
||||
opm-core REQUIRED"
|
||||
# Eigen
|
||||
"Eigen3 3.1.2 "
|
||||
"Eigen3 3.2.0 "
|
||||
)
|
||||
|
@ -104,7 +104,7 @@ try
|
||||
if (use_deck) {
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
Opm::ParserPtr parser(new Opm::Parser());
|
||||
Opm::DeckConstPtr deck = parser->parseFile( deck_filename );
|
||||
deck = parser->parseFile( deck_filename );
|
||||
eclipseState.reset(new EclipseState(deck));
|
||||
|
||||
// Grid init
|
||||
|
@ -38,6 +38,7 @@
|
||||
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
|
||||
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
@ -141,9 +142,13 @@ try
|
||||
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
|
||||
// Linear solver.
|
||||
LinearSolverFactory linsolver(param);
|
||||
NewtonIterationBlackoilSimple fis_solver(linsolver);
|
||||
// Solver for Newton iterations.
|
||||
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver;
|
||||
if (param.getDefault("use_cpr", false)) {
|
||||
fis_solver.reset(new NewtonIterationBlackoilCPR(param));
|
||||
} else {
|
||||
fis_solver.reset(new NewtonIterationBlackoilSimple(param));
|
||||
}
|
||||
|
||||
// Write parameters used for later reference.
|
||||
bool output = param.getDefault("output", true);
|
||||
@ -212,7 +217,7 @@ try
|
||||
*new_props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
fis_solver,
|
||||
*fis_solver,
|
||||
grav);
|
||||
SimulatorReport episodeReport = simulator.run(simtimer, state, well_state);
|
||||
|
||||
|
@ -60,6 +60,7 @@
|
||||
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
|
||||
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
@ -194,9 +195,13 @@ try
|
||||
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
|
||||
// Linear solver.
|
||||
LinearSolverFactory linsolver(param);
|
||||
NewtonIterationBlackoilSimple fis_solver(linsolver);
|
||||
// Solver for Newton iterations.
|
||||
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver;
|
||||
if (param.getDefault("use_cpr", false)) {
|
||||
fis_solver.reset(new NewtonIterationBlackoilCPR(param));
|
||||
} else {
|
||||
fis_solver.reset(new NewtonIterationBlackoilSimple(param));
|
||||
}
|
||||
|
||||
// Write parameters used for later reference.
|
||||
bool output = param.getDefault("output", true);
|
||||
@ -271,7 +276,7 @@ try
|
||||
*new_props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
fis_solver,
|
||||
*fis_solver,
|
||||
grav);
|
||||
SimulatorReport episodeReport = simulator.run(simtimer, state, well_state);
|
||||
|
||||
|
@ -102,8 +102,7 @@ try
|
||||
double grav[] = { 0.0, 0.0 };
|
||||
Opm::DerivedGeology geo(*g, props, grav);
|
||||
|
||||
Opm::LinearSolverFactory linsolver(param);
|
||||
Opm::NewtonIterationBlackoilSimple fis_solver(linsolver);
|
||||
Opm::NewtonIterationBlackoilSimple fis_solver(param);
|
||||
|
||||
Opm::FullyImplicitBlackoilSolver<UnstructuredGrid> solver(param, *g, props, geo, 0, *wells, fis_solver);
|
||||
|
||||
|
182
opm/autodiff/CPRPreconditioner.hpp
Normal file
182
opm/autodiff/CPRPreconditioner.hpp
Normal file
@ -0,0 +1,182 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|
||||
#define OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include "disable_warning_pragmas.h"
|
||||
|
||||
#include <dune/istl/bvector.hh>
|
||||
#include <dune/istl/bcrsmatrix.hh>
|
||||
#include <dune/istl/operators.hh>
|
||||
#include <dune/istl/io.hh>
|
||||
#include <dune/istl/owneroverlapcopy.hh>
|
||||
#include <dune/istl/preconditioners.hh>
|
||||
#include <dune/istl/schwarz.hh>
|
||||
#include <dune/istl/solvers.hh>
|
||||
#include <dune/istl/paamg/amg.hh>
|
||||
#include <dune/istl/paamg/kamg.hh>
|
||||
#include <dune/istl/paamg/pinfo.hh>
|
||||
|
||||
#include "reenable_warning_pragmas.h"
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
/*!
|
||||
\brief Sequential CPR preconditioner.
|
||||
|
||||
This is a two-stage preconditioner, combining an elliptic-type
|
||||
partial solution with ILU0 for the whole system.
|
||||
|
||||
\tparam M The matrix type to operate on
|
||||
\tparam X Type of the update
|
||||
\tparam Y Type of the defect
|
||||
*/
|
||||
template<class M, class X, class Y>
|
||||
class CPRPreconditioner : public Dune::Preconditioner<X,Y> {
|
||||
public:
|
||||
//! \brief The matrix type the preconditioner is for.
|
||||
typedef typename Dune::remove_const<M>::type matrix_type;
|
||||
//! \brief The domain type of the preconditioner.
|
||||
typedef X domain_type;
|
||||
//! \brief The range type of the preconditioner.
|
||||
typedef Y range_type;
|
||||
//! \brief The field type of the preconditioner.
|
||||
typedef typename X::field_type field_type;
|
||||
|
||||
// define the category
|
||||
enum {
|
||||
//! \brief The category the preconditioner is part of.
|
||||
category = Dune::SolverCategory::sequential
|
||||
};
|
||||
|
||||
/*! \brief Constructor.
|
||||
|
||||
Constructor gets all parameters to operate the prec.
|
||||
\param A The matrix to operate on.
|
||||
\param Ae The top-left elliptic part of A.
|
||||
\param w The ILU0 relaxation factor.
|
||||
*/
|
||||
CPRPreconditioner (const M& A, const M& Ae, const field_type relax)
|
||||
: A_(A),
|
||||
ILU_(A), // copy A (will be overwritten by ILU decomp)
|
||||
Ae_(Ae),
|
||||
relax_(relax)
|
||||
{
|
||||
Dune::bilu0_decomposition(ILU_);
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Prepare the preconditioner.
|
||||
|
||||
\copydoc Preconditioner::pre(X&,Y&)
|
||||
*/
|
||||
virtual void pre (X& /*x*/, Y& /*b*/)
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Apply the preconditoner.
|
||||
|
||||
\copydoc Preconditioner::apply(X&,const Y&)
|
||||
*/
|
||||
virtual void apply (X& v, const Y& d)
|
||||
{
|
||||
// Extract part of d corresponding to elliptic part.
|
||||
Y de(Ae_.N());
|
||||
// Note: Assumes that the elliptic part comes first.
|
||||
std::copy_n(d.begin(), Ae_.N(), de.begin());
|
||||
|
||||
// Solve elliptic part, extend solution to full.
|
||||
Y ve = solveElliptic(de);
|
||||
Y vfull(ILU_.N());
|
||||
vfull = 0.0;
|
||||
// Again assuming that the elliptic part comes first.
|
||||
std::copy(ve.begin(), ve.end(), vfull.begin());
|
||||
|
||||
// Subtract elliptic residual from initial residual.
|
||||
// dmodified = d - A * vfull
|
||||
Y dmodified = d;
|
||||
A_.mmv(vfull, dmodified);
|
||||
|
||||
// Apply ILU0.
|
||||
Y vilu(ILU_.N());
|
||||
Dune::bilu_backsolve(ILU_, vilu, dmodified);
|
||||
v = vfull;
|
||||
v += vilu;
|
||||
v *= relax_;
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Clean up.
|
||||
|
||||
\copydoc Preconditioner::post(X&)
|
||||
*/
|
||||
virtual void post (X& /*x*/)
|
||||
{
|
||||
}
|
||||
|
||||
private:
|
||||
Y solveElliptic(Y& de)
|
||||
{
|
||||
// std::cout << "solveElliptic()" << std::endl;
|
||||
// Construct operator, scalar product and vectors needed.
|
||||
typedef Dune::MatrixAdapter<M,X,X> Operator;
|
||||
Operator opAe(Ae_);
|
||||
Dune::SeqScalarProduct<X> sp;
|
||||
// Right hand side.
|
||||
// System solution
|
||||
X x(opAe.getmat().M());
|
||||
x = 0.0;
|
||||
|
||||
// Construct preconditioner.
|
||||
typedef typename Dune::SeqILU0<M,X,X> Preconditioner;
|
||||
const double relax = 1.0;
|
||||
Preconditioner precond(Ae_, relax);
|
||||
|
||||
// Construct linear solver.
|
||||
const double tolerance = 1e-4;
|
||||
const int maxit = 5000;
|
||||
const int verbosity = 0;
|
||||
Dune::BiCGSTABSolver<X> linsolve(opAe, sp, precond, tolerance, maxit, verbosity);
|
||||
|
||||
// Solve system.
|
||||
Dune::InverseOperatorResult result;
|
||||
linsolve.apply(x, de, result);
|
||||
if (result.converged) {
|
||||
// std::cout << "solveElliptic() successful!" << std::endl;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
//! \brief The matrix for the full linear problem.
|
||||
const matrix_type& A_;
|
||||
//! \brief The ILU0 decomposition of the matrix.
|
||||
matrix_type ILU_;
|
||||
//! \brief The elliptic part of the matrix.
|
||||
matrix_type Ae_;
|
||||
//! \brief The relaxation factor to use.
|
||||
field_type relax_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|
@ -283,9 +283,10 @@ namespace Opm {
|
||||
bool &oscillate, bool &stagnate ) const;
|
||||
|
||||
void stablizeNewton(V &dx, V &dxOld, const double omega, const RelaxType relax_type) const;
|
||||
const double dpMaxRel() const { return dp_max_rel_; }
|
||||
const double dsMax() const { return ds_max_; }
|
||||
const double drsMaxRel() const { return drs_max_rel_; }
|
||||
|
||||
double dpMaxRel() const { return dp_max_rel_; }
|
||||
double dsMax() const { return ds_max_; }
|
||||
double drsMaxRel() const { return drs_max_rel_; }
|
||||
|
||||
};
|
||||
} // namespace Opm
|
||||
|
488
opm/autodiff/NewtonIterationBlackoilCPR.cpp
Normal file
488
opm/autodiff/NewtonIterationBlackoilCPR.cpp
Normal file
@ -0,0 +1,488 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
|
||||
#include <opm/autodiff/CPRPreconditioner.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
|
||||
#include "disable_warning_pragmas.h"
|
||||
|
||||
#include <dune/istl/bvector.hh>
|
||||
#include <dune/istl/bcrsmatrix.hh>
|
||||
#include <dune/istl/operators.hh>
|
||||
#include <dune/istl/io.hh>
|
||||
#include <dune/istl/owneroverlapcopy.hh>
|
||||
#include <dune/istl/preconditioners.hh>
|
||||
#include <dune/istl/schwarz.hh>
|
||||
#include <dune/istl/solvers.hh>
|
||||
#include <dune/istl/paamg/amg.hh>
|
||||
#include <dune/istl/paamg/kamg.hh>
|
||||
#include <dune/istl/paamg/pinfo.hh>
|
||||
|
||||
#include "reenable_warning_pragmas.h"
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
typedef Dune::FieldVector<double, 1 > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<double, 1, 1> MatrixBlockType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
typedef Dune::BlockVector<VectorBlockType> Vector;
|
||||
|
||||
|
||||
namespace {
|
||||
/// Eliminate a variable via Schur complement.
|
||||
/// \param[in] eqs set of equations with Jacobians
|
||||
/// \param[in] n index of equation/variable to eliminate.
|
||||
/// \return new set of equations, one smaller than eqs.
|
||||
/// Note: this method requires the eliminated variable to have the same size
|
||||
/// as the equation in the corresponding position (that also will be eliminated).
|
||||
/// It also required the jacobian block n of equation n to be diagonal.
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n);
|
||||
|
||||
/// Recover that value of a variable previously eliminated.
|
||||
/// \param[in] equation previously eliminated equation.
|
||||
/// \param[in] partial_solution solution to the remainder system after elimination.
|
||||
/// \param[in] n index of equation/variable that was eliminated.
|
||||
/// \return solution to complete system.
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n);
|
||||
|
||||
/// Determine diagonality of a sparse matrix.
|
||||
/// If there are off-diagonal elements in the sparse
|
||||
/// structure, this function returns true if they are all
|
||||
/// equal to zero.
|
||||
/// \param[in] matrix the matrix under consideration
|
||||
/// \return true if matrix is diagonal
|
||||
bool isDiagonal(const M& matrix);
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b);
|
||||
|
||||
/// Create a dune-istl matrix from an Eigen matrix.
|
||||
/// \param[in] matrix input Eigen::SparseMatrix
|
||||
/// \return output Dune::BCRSMatrix
|
||||
Mat makeIstlMatrix(const Eigen::SparseMatrix<double, Eigen::RowMajor>& matrix);
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Construct a system solver.
|
||||
/// \param[in] linsolver linear solver to use
|
||||
NewtonIterationBlackoilCPR::NewtonIterationBlackoilCPR(const parameter::ParameterGroup& /*param*/)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Solve the linear system Ax = b, with A being the
|
||||
/// combined derivative matrix of the residual and b
|
||||
/// being the residual itself.
|
||||
/// \param[in] residual residual object containing A and b.
|
||||
/// \return the solution x
|
||||
NewtonIterationBlackoilCPR::SolutionVector
|
||||
NewtonIterationBlackoilCPR::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
||||
{
|
||||
// Build the vector of equations.
|
||||
const int np = residual.material_balance_eq.size();
|
||||
std::vector<ADB> eqs;
|
||||
eqs.reserve(np + 2);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
eqs.push_back(residual.material_balance_eq[phase]);
|
||||
}
|
||||
eqs.push_back(residual.well_flux_eq);
|
||||
eqs.push_back(residual.well_eq);
|
||||
|
||||
// Eliminate the well-related unknowns, and corresponding equations.
|
||||
std::vector<ADB> elim_eqs;
|
||||
elim_eqs.reserve(2);
|
||||
elim_eqs.push_back(eqs[np]);
|
||||
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
|
||||
elim_eqs.push_back(eqs[np]);
|
||||
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
|
||||
assert(int(eqs.size()) == np);
|
||||
|
||||
// Scale material balance equations.
|
||||
const double matbalscale[3] = { 1.1169, 1.0031, 0.0031 }; // HACK hardcoded instead of computed.
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
eqs[phase] = eqs[phase] * matbalscale[phase];
|
||||
}
|
||||
|
||||
// Add material balance equations (or other manipulations) to
|
||||
// form pressure equation in top left of full system.
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
|
||||
V b;
|
||||
formEllipticSystem(np, eqs, A, b);
|
||||
|
||||
// Scale pressure equation.
|
||||
const double pscale = 200*unit::barsa;
|
||||
const int nc = residual.material_balance_eq[0].size();
|
||||
A.topRows(nc) *= pscale;
|
||||
b.topRows(nc) *= pscale;
|
||||
|
||||
// Solve reduced system.
|
||||
SolutionVector dx(SolutionVector::Zero(b.size()));
|
||||
|
||||
// Create ISTL matrix.
|
||||
Mat istlA = makeIstlMatrix(A);
|
||||
|
||||
// Create ISTL matrix for elliptic part.
|
||||
Mat istlAe = makeIstlMatrix(A.topLeftCorner(nc, nc));
|
||||
|
||||
// Construct operator, scalar product and vectors needed.
|
||||
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
|
||||
Operator opA(istlA);
|
||||
Dune::SeqScalarProduct<Vector> sp;
|
||||
// Right hand side.
|
||||
Vector istlb(opA.getmat().N());
|
||||
std::copy_n(b.data(), istlb.size(), istlb.begin());
|
||||
// System solution
|
||||
Vector x(opA.getmat().M());
|
||||
x = 0.0;
|
||||
|
||||
// Construct preconditioner.
|
||||
// typedef Dune::SeqILU0<Mat,Vector,Vector> Preconditioner;
|
||||
typedef Opm::CPRPreconditioner<Mat,Vector,Vector> Preconditioner;
|
||||
const double relax = 1.0;
|
||||
Preconditioner precond(istlA, istlAe, relax);
|
||||
|
||||
// Construct linear solver.
|
||||
const double tolerance = 1e-3;
|
||||
const int maxit = 5000;
|
||||
const int verbosity = 1;
|
||||
const int restart = 40;
|
||||
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond, tolerance, restart, maxit, verbosity);
|
||||
|
||||
// Solve system.
|
||||
Dune::InverseOperatorResult result;
|
||||
linsolve.apply(x, istlb, result);
|
||||
|
||||
// Check for failure of linear solver.
|
||||
if (!result.converged) {
|
||||
OPM_THROW(std::runtime_error, "Convergence failure for linear solver.");
|
||||
}
|
||||
|
||||
// Copy solver output to dx.
|
||||
std::copy(x.begin(), x.end(), dx.data());
|
||||
|
||||
// Compute full solution using the eliminated equations.
|
||||
// Recovery in inverse order of elimination.
|
||||
dx = recoverVariable(elim_eqs[1], dx, np);
|
||||
dx = recoverVariable(elim_eqs[0], dx, np);
|
||||
return dx;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
|
||||
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
||||
{
|
||||
// Check that the variable index to eliminate is within bounds.
|
||||
const int num_eq = eqs.size();
|
||||
const int num_vars = eqs[0].derivative().size();
|
||||
if (num_eq != num_vars) {
|
||||
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
||||
}
|
||||
if (n >= num_eq) {
|
||||
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
||||
}
|
||||
|
||||
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
||||
// This is applied to all 2x2 block submatrices.
|
||||
// We require that D is diagonal.
|
||||
const M& D = eqs[n].derivative()[n];
|
||||
if (!isDiagonal(D)) {
|
||||
// std::cout << "++++++++++++++++++++++++++++++++++++++++++++\n"
|
||||
// << D
|
||||
// << "++++++++++++++++++++++++++++++++++++++++++++\n" << std::endl;
|
||||
OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
|
||||
}
|
||||
V diag = D.diagonal();
|
||||
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
|
||||
std::vector<V> vals(num_eq); // Number n will remain empty.
|
||||
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
jacs[eq].reserve(num_eq - 1);
|
||||
const M& B = eqs[eq].derivative()[n];
|
||||
for (int var = 0; var < num_eq; ++var) {
|
||||
if (var == n) {
|
||||
continue;
|
||||
}
|
||||
// Create new jacobians.
|
||||
M schur_jac = eqs[eq].derivative()[var] - B * (invD * eqs[n].derivative()[var]);
|
||||
jacs[eq].push_back(schur_jac);
|
||||
}
|
||||
// Update right hand side.
|
||||
vals[eq] = eqs[eq].value().matrix() - B * (invD * eqs[n].value().matrix());
|
||||
}
|
||||
|
||||
// Create return value.
|
||||
std::vector<ADB> retval;
|
||||
retval.reserve(num_eq - 1);
|
||||
for (int eq = 0; eq < num_eq; ++eq) {
|
||||
if (eq == n) {
|
||||
continue;
|
||||
}
|
||||
retval.push_back(ADB::function(vals[eq], jacs[eq]));
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
||||
{
|
||||
// The equation to solve for the unknown y (to be recovered) is
|
||||
// Cx + Dy = b
|
||||
// y = inv(D) (b - Cx)
|
||||
// where D is the eliminated block, C is the jacobian of
|
||||
// the eliminated equation with respect to the
|
||||
// non-eliminated unknowms, b is the right-hand side of
|
||||
// the eliminated equation, and x is the partial solution
|
||||
// of the non-eliminated unknowns.
|
||||
// We require that D is diagonal.
|
||||
|
||||
// Find inv(D).
|
||||
const M& D = equation.derivative()[n];
|
||||
if (!isDiagonal(D)) {
|
||||
OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
|
||||
}
|
||||
V diag = D.diagonal();
|
||||
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
|
||||
|
||||
// Build C.
|
||||
std::vector<M> C_jacs = equation.derivative();
|
||||
C_jacs.erase(C_jacs.begin() + n);
|
||||
ADB eq_coll = collapseJacs(ADB::function(equation.value(), C_jacs));
|
||||
const M& C = eq_coll.derivative()[0];
|
||||
|
||||
// Compute value of eliminated variable.
|
||||
V elim_var = invD * (equation.value().matrix() - C * partial_solution.matrix());
|
||||
|
||||
// Find the relevant sizes to use when reconstructing the full solution.
|
||||
const int nelim = equation.size();
|
||||
const int npart = partial_solution.size();
|
||||
assert(C.cols() == npart);
|
||||
const int full_size = nelim + npart;
|
||||
int start = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
start += equation.derivative()[i].cols();
|
||||
}
|
||||
assert(start < full_size);
|
||||
|
||||
// Reconstruct complete solution vector.
|
||||
V sol(full_size);
|
||||
std::copy_n(partial_solution.data(), start, sol.data());
|
||||
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
||||
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
bool isDiagonal(const M& matr)
|
||||
{
|
||||
M matrix = matr;
|
||||
matrix.makeCompressed();
|
||||
for (int k = 0; k < matrix.outerSize(); ++k) {
|
||||
for (M::InnerIterator it(matrix, k); it; ++it) {
|
||||
if (it.col() != it.row()) {
|
||||
// Off-diagonal element.
|
||||
if (it.value() != 0.0) {
|
||||
// Nonzero off-diagonal element.
|
||||
// std::cout << "off-diag: " << it.row() << ' ' << it.col() << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Form an elliptic system of equations.
|
||||
/// \param[in] num_phases the number of fluid phases
|
||||
/// \param[in] eqs the equations
|
||||
/// \param[out] A the resulting full system matrix
|
||||
/// \param[out] b the right hand side
|
||||
/// This function will deal with the first num_phases
|
||||
/// equations in eqs, and return a matrix A for the full
|
||||
/// system that has a elliptic upper left corner, if possible.
|
||||
void formEllipticSystem(const int num_phases,
|
||||
const std::vector<ADB>& eqs_in,
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
||||
V& b)
|
||||
{
|
||||
if (num_phases != 3) {
|
||||
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
|
||||
}
|
||||
|
||||
// A concession to MRST, to obtain more similar behaviour:
|
||||
// swap the first two equations, so that oil is first, then water.
|
||||
auto eqs = eqs_in;
|
||||
std::swap(eqs[0], eqs[1]);
|
||||
|
||||
// Characterize the material balance equations.
|
||||
const int n = eqs[0].size();
|
||||
const double ratio_limit = 0.01;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
||||
// The l1 block indicates if the equation for a given cell and phase is
|
||||
// sufficiently strong on the diagonal.
|
||||
Block l1 = Block::Zero(n, num_phases);
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
const M& J = eqs[phase].derivative()[0];
|
||||
V dj = J.diagonal().cwiseAbs();
|
||||
V sod = V::Zero(n);
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
||||
}
|
||||
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
||||
}
|
||||
|
||||
// By default, replace first equation with sum of all phase equations.
|
||||
// Build helper vectors.
|
||||
V l21 = V::Zero(n);
|
||||
V l22 = V::Ones(n);
|
||||
V l31 = V::Zero(n);
|
||||
V l33 = V::Ones(n);
|
||||
|
||||
// If the first phase diagonal is not strong enough, we need further treatment.
|
||||
// Then the first equation will be the sum of the remaining equations,
|
||||
// and we swap the first equation into one of their slots.
|
||||
for (int elem = 0; elem < n; ++elem) {
|
||||
if (!l1(elem, 0)) {
|
||||
const double l12x = l1(elem, 1);
|
||||
const double l13x = l1(elem, 2);
|
||||
const bool allzero = (l12x + l13x == 0);
|
||||
if (allzero) {
|
||||
l1(elem, 0) = 1;
|
||||
} else {
|
||||
if (l12x >= l13x) {
|
||||
l21(elem) = 1;
|
||||
l22(elem) = 0;
|
||||
} else {
|
||||
l31(elem) = 1;
|
||||
l33(elem) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the sparse matrix L that does the swaps and sums.
|
||||
Span i1(n, 1, 0);
|
||||
Span i2(n, 1, n);
|
||||
Span i3(n, 1, 2*n);
|
||||
std::vector< Eigen::Triplet<double> > t;
|
||||
t.reserve(7*n);
|
||||
for (int ii = 0; ii < n; ++ii) {
|
||||
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
||||
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
||||
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
||||
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
||||
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
||||
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
||||
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
||||
}
|
||||
M L(3*n, 3*n);
|
||||
L.setFromTriplets(t.begin(), t.end());
|
||||
|
||||
// Combine in single block.
|
||||
ADB total_residual = eqs[0];
|
||||
for (int phase = 1; phase < num_phases; ++phase) {
|
||||
total_residual = vertcat(total_residual, eqs[phase]);
|
||||
}
|
||||
total_residual = collapseJacs(total_residual);
|
||||
|
||||
// Create output as product of L with equations.
|
||||
A = L * total_residual.derivative()[0];
|
||||
b = L * total_residual.value().matrix();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Mat makeIstlMatrix(const Eigen::SparseMatrix<double, Eigen::RowMajor>& matrix)
|
||||
{
|
||||
// Create ISTL matrix.
|
||||
const int size = matrix.rows();
|
||||
const int nonzeros = matrix.nonZeros();
|
||||
const int* ia = matrix.outerIndexPtr();
|
||||
const int* ja = matrix.innerIndexPtr();
|
||||
const double* sa = matrix.valuePtr();
|
||||
Mat A(size, size, nonzeros, Mat::row_wise);
|
||||
for (Mat::CreateIterator row = A.createbegin(); row != A.createend(); ++row) {
|
||||
const int ri = row.index();
|
||||
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
||||
row.insert(ja[i]);
|
||||
}
|
||||
}
|
||||
for (int ri = 0; ri < size; ++ri) {
|
||||
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
||||
A[ri][ja[i]] = sa[i];
|
||||
}
|
||||
}
|
||||
return A;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
58
opm/autodiff/NewtonIterationBlackoilCPR.hpp
Normal file
58
opm/autodiff/NewtonIterationBlackoilCPR.hpp
Normal file
@ -0,0 +1,58 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED
|
||||
#define OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <memory>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// This class solves the fully implicit black-oil system by
|
||||
/// applying a Constrained Pressure Residual preconditioning
|
||||
/// strategy.
|
||||
/// The approach is similar to the one described in
|
||||
/// "Preconditioning for Efficiently Applying Algebraic Multigrid
|
||||
/// in Fully Implicit Reservoir Simulations" by Gries et al (SPE 163608).
|
||||
class NewtonIterationBlackoilCPR : public NewtonIterationBlackoilInterface
|
||||
{
|
||||
public:
|
||||
/// Construct a system solver.
|
||||
/// \param[in] param parameters controlling the behaviour of
|
||||
/// the preconditioning and choice of
|
||||
/// linear solvers.
|
||||
/// Note: parameters currently unused.
|
||||
NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param);
|
||||
|
||||
/// Solve the system of linear equations Ax = b, with A being the
|
||||
/// combined derivative matrix of the residual and b
|
||||
/// being the residual itself.
|
||||
/// \param[in] residual residual object containing A and b.
|
||||
/// \return the solution x
|
||||
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED
|
@ -22,15 +22,16 @@
|
||||
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Construct a system solver.
|
||||
/// \param[in] linsolver linear solver to use
|
||||
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const LinearSolverInterface& linsolver)
|
||||
: linsolver_(linsolver)
|
||||
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param)
|
||||
{
|
||||
linsolver_.reset(new LinearSolverFactory(param));
|
||||
}
|
||||
|
||||
/// Solve the linear system Ax = b, with A being the
|
||||
@ -54,9 +55,9 @@ namespace Opm
|
||||
|
||||
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual.value().data(), dx.data());
|
||||
= linsolver_->solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
OPM_THROW(std::runtime_error,
|
||||
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
|
||||
|
@ -22,7 +22,9 @@
|
||||
|
||||
|
||||
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <memory>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -35,8 +37,9 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Construct a system solver.
|
||||
/// \param[in] linsolver linear solver to use
|
||||
NewtonIterationBlackoilSimple(const LinearSolverInterface& linsolver);
|
||||
/// \param[in] param parameters controlling the behaviour and
|
||||
/// choice of linear solver.
|
||||
NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param);
|
||||
|
||||
/// Solve the system of linear equations Ax = b, with A being the
|
||||
/// combined derivative matrix of the residual and b
|
||||
@ -46,7 +49,7 @@ namespace Opm
|
||||
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const;
|
||||
|
||||
private:
|
||||
const LinearSolverInterface& linsolver_;
|
||||
std::unique_ptr<LinearSolverInterface> linsolver_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user