This commit is contained in:
Xavier Raynaud
2012-03-15 18:10:10 +01:00
3 changed files with 661 additions and 249 deletions

View File

@@ -98,5 +98,115 @@ namespace Opm
}
/// @brief Computes injected and produced volumes of all phases,
/// and injeced and produced polymer mass.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& src,
const double dt,
const double inj_c,
double* injected,
double* produced,
double& polyinj,
double& polyprod)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
polyinj = 0.0;
polyprod = 0.0;
std::vector<double> inv_eff_visc(np);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
injected[0] += src[cell]*dt;
polyinj += src[cell]*dt*inj_c;
} else if (src[cell] < 0.0) {
const double flux = -src[cell]*dt;
const double* sat = &s[np*cell];
props.relperm(1, sat, &cell, &mob[0], 0);
polyprops.effectiveInvVisc(c[cell], visc, &inv_eff_visc[0]);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] *= inv_eff_visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
polyprod += (mob[0]/totmob)*flux*c[cell]; // TODO check this term.
}
}
}
/// @brief Computes total polymer mass over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] dps dead pore space
/// @return total polymer mass in grid.
double computePolymerMass(const std::vector<double>& pv,
const std::vector<double>& s,
const std::vector<double>& c,
const double dps)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double polymass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
polymass += c[cell]*pv[cell]*(s[np*cell + 0] - dps);
}
return polymass;
}
/// @brief Computes total absorbed polymer mass over all grid cells.
/// @param[in] polyprops polymer properties
/// @param[in] pv the pore volume by cell.
/// @param[in] cmax max polymer concentration for cell
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const Opm::PolymerProperties& polyprops,
const std::vector<double>& pv,
const std::vector<double>& cmax)
{
const int num_cells = pv.size();
const double rhor = polyprops.rockDensity();
double abs_mass = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
abs_mass += polyprops.adsorbtion(cmax[cell])*pv[cell]*rhor;
}
return abs_mass;
}
} // namespace Opm

View File

@@ -60,6 +60,58 @@ namespace Opm
const std::vector<double>& c,
std::vector<double>& totmob,
std::vector<double>& omega);
/// @brief Computes injected and produced volumes of all phases,
/// and injeced and produced polymer mass.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const IncompPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const std::vector<double>& s,
const std::vector<double>& c,
const std::vector<double>& src,
const double dt,
const double inj_c,
double* injected,
double* produced,
double& polyinj,
double& polyprod);
/// @brief Computes total (free) polymer mass over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration
/// @param[in] dps dead pore space
/// @return total polymer mass in grid.
double computePolymerMass(const std::vector<double>& pv,
const std::vector<double>& s,
const std::vector<double>& c,
const double dps);
/// @brief Computes total absorbed polymer mass over all grid cells.
/// @param[in] polyprops polymer properties
/// @param[in] pv the pore volume by cell.
/// @param[in] cmax max polymer concentration for cell
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const Opm::PolymerProperties& polyprops,
const std::vector<double>& pv,
const std::vector<double>& cmax);
} // namespace Opm