mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-28 20:13:49 -06:00
Merge remote-tracking branch 'atgeirr/master'
This commit is contained in:
commit
e2b5586b31
@ -28,6 +28,8 @@
|
||||
list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/BlackoilPropsAd.cpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.cpp
|
||||
opm/autodiff/ImpesTPFAAD.cpp
|
||||
opm/autodiff/SimulatorCompressibleAd.cpp
|
||||
opm/autodiff/SimulatorIncompTwophaseAdfi.cpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.cpp
|
||||
)
|
||||
@ -48,6 +50,7 @@ list (APPEND TEST_DATA_FILES
|
||||
# find tutorials examples -name '*.c*' -printf '\t%p\n' | sort
|
||||
list (APPEND EXAMPLE_SOURCE_FILES
|
||||
examples/find_zero.cpp
|
||||
examples/sim_2p_comp_ad.cpp
|
||||
examples/sim_2p_incomp_adfi.cpp
|
||||
examples/sim_simple.cpp
|
||||
examples/test_impestpfa_ad.cpp
|
||||
@ -67,7 +70,9 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/AutoDiff.hpp
|
||||
opm/autodiff/BlackoilPropsAd.hpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.hpp
|
||||
opm/autodiff/GeoProps.hpp
|
||||
opm/autodiff/ImpesTPFAAD.hpp
|
||||
opm/autodiff/SimulatorCompressibleAd.hpp
|
||||
opm/autodiff/SimulatorIncompTwophaseAdfi.hpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.hpp
|
||||
)
|
||||
|
285
examples/sim_2p_comp_ad.cpp
Normal file
285
examples/sim_2p_comp_ad.cpp
Normal file
@ -0,0 +1,285 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/grid/GridManager.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/simulator/initState.hpp>
|
||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||
#include <opm/core/simulator/SimulatorTimer.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
|
||||
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
|
||||
#include <opm/core/props/rock/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/autodiff/SimulatorCompressibleAd.hpp>
|
||||
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
|
||||
{
|
||||
if (param.anyUnused()) {
|
||||
std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
}
|
||||
} // anon namespace
|
||||
|
||||
|
||||
|
||||
// ----------------- Main program -----------------
|
||||
int
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
using namespace Opm;
|
||||
|
||||
std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
|
||||
parameter::ParameterGroup param(argc, argv, false);
|
||||
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
||||
|
||||
// If we have a "deck_filename", grid and props will be read from that.
|
||||
bool use_deck = param.has("deck_filename");
|
||||
boost::scoped_ptr<EclipseGridParser> deck;
|
||||
boost::scoped_ptr<GridManager> grid;
|
||||
boost::scoped_ptr<BlackoilPropertiesInterface> props;
|
||||
boost::scoped_ptr<RockCompressibility> rock_comp;
|
||||
BlackoilState state;
|
||||
// bool check_well_controls = false;
|
||||
// int max_well_control_iterations = 0;
|
||||
double gravity[3] = { 0.0 };
|
||||
if (use_deck) {
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
deck.reset(new EclipseGridParser(deck_filename));
|
||||
// Grid init
|
||||
grid.reset(new GridManager(*deck));
|
||||
// Rock and fluid init
|
||||
props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param));
|
||||
// check_well_controls = param.getDefault("check_well_controls", false);
|
||||
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
|
||||
// Rock compressibility.
|
||||
rock_comp.reset(new RockCompressibility(*deck));
|
||||
// Gravity.
|
||||
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
|
||||
// Init state variables (saturation and pressure).
|
||||
if (param.has("init_saturation")) {
|
||||
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
||||
} else {
|
||||
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
|
||||
}
|
||||
initBlackoilSurfvol(*grid->c_grid(), *props, state);
|
||||
} else {
|
||||
// Grid init.
|
||||
const int nx = param.getDefault("nx", 100);
|
||||
const int ny = param.getDefault("ny", 100);
|
||||
const int nz = param.getDefault("nz", 1);
|
||||
const double dx = param.getDefault("dx", 1.0);
|
||||
const double dy = param.getDefault("dy", 1.0);
|
||||
const double dz = param.getDefault("dz", 1.0);
|
||||
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
|
||||
// Rock and fluid init.
|
||||
props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
// Rock compressibility.
|
||||
rock_comp.reset(new RockCompressibility(param));
|
||||
// Gravity.
|
||||
gravity[2] = param.getDefault("gravity", 0.0);
|
||||
// Init state variables (saturation and pressure).
|
||||
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
||||
initBlackoilSurfvol(*grid->c_grid(), *props, state);
|
||||
}
|
||||
|
||||
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
|
||||
// Initialising src
|
||||
int num_cells = grid->c_grid()->number_of_cells;
|
||||
std::vector<double> src(num_cells, 0.0);
|
||||
if (use_deck) {
|
||||
// Do nothing, wells will be the driving force, not source terms.
|
||||
} else {
|
||||
// Compute pore volumes, in order to enable specifying injection rate
|
||||
// terms of total pore volume.
|
||||
std::vector<double> porevol;
|
||||
if (rock_comp->isActive()) {
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
|
||||
} else {
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
const double default_injection = use_gravity ? 0.0 : 0.1;
|
||||
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
|
||||
*tot_porevol_init/unit::day;
|
||||
src[0] = flow_per_sec;
|
||||
src[num_cells - 1] = -flow_per_sec;
|
||||
}
|
||||
|
||||
// Boundary conditions.
|
||||
FlowBCManager bcs;
|
||||
if (param.getDefault("use_pside", false)) {
|
||||
int pside = param.get<int>("pside");
|
||||
double pside_pressure = param.get<double>("pside_pressure");
|
||||
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
|
||||
}
|
||||
|
||||
// Linear solver.
|
||||
LinearSolverFactory linsolver(param);
|
||||
|
||||
// Write parameters used for later reference.
|
||||
bool output = param.getDefault("output", true);
|
||||
std::ofstream epoch_os;
|
||||
std::string output_dir;
|
||||
if (output) {
|
||||
output_dir =
|
||||
param.getDefault("output_dir", std::string("output"));
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
std::string filename = output_dir + "/epoch_timing.param";
|
||||
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
// open file to clean it. The file is appended to in SimulatorTwophase
|
||||
filename = output_dir + "/step_timing.param";
|
||||
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
step_os.close();
|
||||
param.writeParam(output_dir + "/simulation.param");
|
||||
}
|
||||
|
||||
|
||||
std::cout << "\n\n================ Starting main simulation loop ===============\n"
|
||||
<< " (number of epochs: "
|
||||
<< (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;
|
||||
|
||||
SimulatorReport rep;
|
||||
if (!use_deck) {
|
||||
// Simple simulation without a deck.
|
||||
WellsManager wells; // no wells.
|
||||
SimulatorCompressibleAd simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
SimulatorTimer simtimer;
|
||||
simtimer.init(param);
|
||||
warnIfUnusedParams(param);
|
||||
WellState well_state;
|
||||
well_state.init(0, state);
|
||||
rep = simulator.run(simtimer, state, well_state);
|
||||
} else {
|
||||
// With a deck, we may have more epochs etc.
|
||||
WellState well_state;
|
||||
int step = 0;
|
||||
SimulatorTimer simtimer;
|
||||
// Use timer for last epoch to obtain total time.
|
||||
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
|
||||
simtimer.init(*deck);
|
||||
const double total_time = simtimer.totalTime();
|
||||
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
|
||||
// Set epoch index.
|
||||
deck->setCurrentEpoch(epoch);
|
||||
|
||||
// Update the timer.
|
||||
if (deck->hasField("TSTEP")) {
|
||||
simtimer.init(*deck);
|
||||
} else {
|
||||
if (epoch != 0) {
|
||||
THROW("No TSTEP in deck for epoch " << epoch);
|
||||
}
|
||||
simtimer.init(param);
|
||||
}
|
||||
simtimer.setCurrentStepNum(step);
|
||||
simtimer.setTotalTime(total_time);
|
||||
|
||||
// Report on start of epoch.
|
||||
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
|
||||
<< "\n (number of steps: "
|
||||
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
|
||||
|
||||
// Create new wells, well_state
|
||||
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
|
||||
// @@@ HACK: we should really make a new well state and
|
||||
// properly transfer old well state to it every epoch,
|
||||
// since number of wells may change etc.
|
||||
if (epoch == 0) {
|
||||
well_state.init(wells.c_wells(), state);
|
||||
}
|
||||
|
||||
// Create and run simulator.
|
||||
SimulatorCompressibleAd simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
if (epoch == 0) {
|
||||
warnIfUnusedParams(param);
|
||||
}
|
||||
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
|
||||
if (output) {
|
||||
epoch_rep.reportParam(epoch_os);
|
||||
}
|
||||
// Update total timing report and remember step number.
|
||||
rep += epoch_rep;
|
||||
step = simtimer.currentStepNum();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "\n\n================ End of simulation ===============\n\n";
|
||||
rep.report(std::cout);
|
||||
|
||||
if (output) {
|
||||
std::string filename = output_dir + "/walltime.param";
|
||||
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
|
||||
rep.reportParam(tot_os);
|
||||
}
|
||||
|
||||
}
|
@ -20,8 +20,7 @@
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#define HACK_INCOMPRESSIBLE_GRAVITY 0
|
||||
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAd.hpp>
|
||||
|
||||
@ -32,75 +31,17 @@
|
||||
|
||||
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
|
||||
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/simulator/initState.hpp>
|
||||
|
||||
#include <opm/core/wells.h>
|
||||
// #include <opm/core/WellsManager.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace {
|
||||
template <class Geology, class Vector>
|
||||
class DerivedGeology {
|
||||
public:
|
||||
typedef Vector V;
|
||||
|
||||
DerivedGeology(const UnstructuredGrid& grid,
|
||||
const Geology& geo ,
|
||||
const double* grav = 0)
|
||||
: pvol_ (grid.number_of_cells)
|
||||
, trans_(grid.number_of_faces)
|
||||
, gpot_ (grid.cell_facepos[ grid.number_of_cells ])
|
||||
{
|
||||
// Pore volume
|
||||
const typename Vector::Index nc = grid.number_of_cells;
|
||||
std::transform(grid.cell_volumes, grid.cell_volumes + nc,
|
||||
geo.porosity(), pvol_.data(),
|
||||
std::multiplies<double>());
|
||||
|
||||
// Transmissibility
|
||||
Vector htrans(grid.cell_facepos[nc]);
|
||||
UnstructuredGrid* ug = const_cast<UnstructuredGrid*>(& grid);
|
||||
tpfa_htrans_compute(ug, geo.permeability(), htrans.data());
|
||||
tpfa_trans_compute (ug, htrans.data() , trans_.data());
|
||||
|
||||
if (grav != 0) {
|
||||
const typename Vector::Index nd = grid.dimensions;
|
||||
|
||||
for (typename Vector::Index c = 0; c < nc; ++c) {
|
||||
const double* const cc = & grid.cell_centroids[c*nd + 0];
|
||||
|
||||
const int* const p = grid.cell_facepos;
|
||||
for (int i = p[c]; i < p[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[i];
|
||||
|
||||
const double* const fc = & grid.face_centroids[f*nd + 0];
|
||||
|
||||
for (typename Vector::Index d = 0; d < nd; ++d) {
|
||||
gpot_[i] += grav[d] * (fc[d] - cc[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const Vector& poreVolume() const { return pvol_ ; }
|
||||
const Vector& transmissibility() const { return trans_; }
|
||||
const Vector& gravityPotential() const { return gpot_ ; }
|
||||
|
||||
private:
|
||||
Vector pvol_ ;
|
||||
Vector trans_;
|
||||
Vector gpot_ ;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -116,10 +57,6 @@ main(int argc, char* argv[])
|
||||
const Opm::BlackoilPropsAd props(oldprops);
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef Opm::BlackoilPropertiesInterface Geology;
|
||||
typedef DerivedGeology<Geology, ADB::V> GeoProps;
|
||||
typedef Opm::BlackoilPropsAd BOFluid;
|
||||
typedef Opm::ImpesTPFAAD<GeoProps> PSolver;
|
||||
|
||||
Wells* wells = create_wells(2, 2, 5);
|
||||
const double inj_frac[] = { 1.0, 0.0 };
|
||||
@ -142,9 +79,9 @@ main(int argc, char* argv[])
|
||||
set_current_control(1, 0, wells);
|
||||
|
||||
double grav[] = { /*1.0*/ 0.0, 0.0 };
|
||||
GeoProps geo(*g, oldprops, grav);
|
||||
Opm::DerivedGeology geo(*g, props, grav);
|
||||
Opm::LinearSolverFactory linsolver(param);
|
||||
PSolver ps (*g, props, geo, *wells, linsolver);
|
||||
Opm::ImpesTPFAAD ps(*g, props, geo, *wells, linsolver);
|
||||
|
||||
Opm::BlackoilState state;
|
||||
initStateBasic(*g, oldprops, param, 0.0, state);
|
||||
|
91
opm/autodiff/GeoProps.hpp
Normal file
91
opm/autodiff/GeoProps.hpp
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_GEOPROPS_HEADER_INCLUDED
|
||||
#define OPM_GEOPROPS_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
#include <Eigen/Eigen>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class DerivedGeology
|
||||
{
|
||||
public:
|
||||
typedef Eigen::ArrayXd Vector;
|
||||
|
||||
/// Construct contained derived geological properties
|
||||
/// from grid and property information.
|
||||
template <class Props>
|
||||
DerivedGeology(const UnstructuredGrid& grid,
|
||||
const Props& props ,
|
||||
const double* grav = 0)
|
||||
: pvol_ (grid.number_of_cells)
|
||||
, trans_(grid.number_of_faces)
|
||||
, gpot_ (grid.cell_facepos[ grid.number_of_cells ])
|
||||
{
|
||||
// Pore volume
|
||||
const typename Vector::Index nc = grid.number_of_cells;
|
||||
std::transform(grid.cell_volumes, grid.cell_volumes + nc,
|
||||
props.porosity(), pvol_.data(),
|
||||
std::multiplies<double>());
|
||||
|
||||
// Transmissibility
|
||||
Vector htrans(grid.cell_facepos[nc]);
|
||||
UnstructuredGrid* ug = const_cast<UnstructuredGrid*>(& grid);
|
||||
tpfa_htrans_compute(ug, props.permeability(), htrans.data());
|
||||
tpfa_trans_compute (ug, htrans.data() , trans_.data());
|
||||
|
||||
if (grav != 0) {
|
||||
const typename Vector::Index nd = grid.dimensions;
|
||||
|
||||
for (typename Vector::Index c = 0; c < nc; ++c) {
|
||||
const double* const cc = & grid.cell_centroids[c*nd + 0];
|
||||
|
||||
const int* const p = grid.cell_facepos;
|
||||
for (int i = p[c]; i < p[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[i];
|
||||
|
||||
const double* const fc = & grid.face_centroids[f*nd + 0];
|
||||
|
||||
for (typename Vector::Index d = 0; d < nd; ++d) {
|
||||
gpot_[i] += grav[d] * (fc[d] - cc[d]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const Vector& poreVolume() const { return pvol_ ; }
|
||||
const Vector& transmissibility() const { return trans_; }
|
||||
const Vector& gravityPotential() const { return gpot_ ; }
|
||||
|
||||
private:
|
||||
Vector pvol_ ;
|
||||
Vector trans_;
|
||||
Vector gpot_ ;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // OPM_GEOPROPS_HEADER_INCLUDED
|
567
opm/autodiff/ImpesTPFAAD.cpp
Normal file
567
opm/autodiff/ImpesTPFAAD.cpp
Normal file
@ -0,0 +1,567 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
|
||||
#include <iomanip>
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
namespace Opm {
|
||||
|
||||
// Repeated from inside ImpesTPFAAD for convenience.
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
|
||||
ImpesTPFAAD::ImpesTPFAAD(const UnstructuredGrid& grid,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo,
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver)
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, wells_ (wells)
|
||||
, linsolver_(linsolver)
|
||||
// , pdepfdata_(grid.number_of_cells, fluid)
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, cell_residual_ (ADB::null())
|
||||
, well_flow_residual_ ()
|
||||
, well_residual_ (ADB::null())
|
||||
, total_residual_ (ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
ImpesTPFAAD::solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
well_flow_residual_.resize(np, ADB::null());
|
||||
|
||||
// Compute relperms once and for all (since saturations are explicit).
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
ASSERT(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
DataBlock well_s(nperf, np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_.comp_frac[np*w];
|
||||
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
||||
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
||||
}
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
const double atol = 1.0e-10;
|
||||
const double rtol = 5.0e-8;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
std::cout << "\nIteration Residual\n"
|
||||
<< std::setw(9) << it
|
||||
<< std::setw(18) << r0 << std::endl;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(state, well_state);
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
std::cout << std::setw(9) << it
|
||||
<< std::setw(18) << r << std::endl;
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converged pressure solution");
|
||||
}
|
||||
else {
|
||||
computeFluxes(state, well_state);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ImpesTPFAAD::assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
|
||||
const V& pv = geo_.poreVolume();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
||||
const DataBlock qall = DataBlock::Zero(nc, np);
|
||||
const V delta_t = dt * V::Ones(nc, 1);
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
||||
|
||||
// Initialize AD variables: p (cell pressures), qs (well rates) and bhp (well bhp).
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<V> vars0 = { p0, qs0, bhp0 };
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
const ADB& p = vars[0];
|
||||
const ADB& qs = vars[1];
|
||||
const ADB& bhp = vars[2];
|
||||
std::vector<int> bpat = p.blockPattern();
|
||||
|
||||
// Compute T_ij * (p_i - p_j) and use for upwinding.
|
||||
const ADB nkgradp = transi * (ops_.ngrad * p);
|
||||
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
|
||||
|
||||
// Extract variables for perforation cell pressures
|
||||
// and corresponding perforation well pressures.
|
||||
const ADB p_perfcell = subset(p, well_cells);
|
||||
// Construct matrix to map wells->perforations.
|
||||
M well_to_perf(well_cells.size(), nw);
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> w2p;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
||||
w2p.emplace_back(perf, w, 1.0);
|
||||
}
|
||||
}
|
||||
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
||||
const M perf_to_well = well_to_perf.transpose();
|
||||
// Construct pressure difference vector for wells.
|
||||
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
||||
// Finally construct well perforation pressures and well flows.
|
||||
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
|
||||
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
||||
|
||||
cell_residual_ = ADB::constant(pv, bpat);
|
||||
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
||||
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_b = fluidFvf(phase, p, cells);
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
|
||||
const V kr = fluidKr(phase);
|
||||
// Explicitly not asking for derivatives of viscosity,
|
||||
// since they are not available yet.
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V cell_mob = kr / mu;
|
||||
const V face_mob = upwind.select(cell_mob);
|
||||
const V well_kr = fluidKrWell(phase);
|
||||
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
|
||||
const V well_mob = well_kr / well_mu;
|
||||
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
||||
const ADB flux = face_mob * (nkgradp + (grav_ * cell_rho));
|
||||
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
const ADB face_b = upwind.select(cell_b);
|
||||
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
||||
const V z0 = z0all.block(0, phase, nc, 1);
|
||||
const V q = qall .block(0, phase, nc, 1);
|
||||
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
||||
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b)
|
||||
+ well_contrib);
|
||||
const V qcontrib = delta_t * q;
|
||||
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
||||
const ADB component_contrib = pvcontrib + qcontrib;
|
||||
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
||||
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
||||
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
||||
std::vector<int> well_flow_res_phase_idx(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
well_flow_res_phase_idx[w] = w + phase*nw;
|
||||
}
|
||||
well_flow_residual_[phase] = well_rates - subset(qs, well_flow_res_phase_idx);
|
||||
}
|
||||
cell_residual_ = cell_residual_ + divcontrib_sum;
|
||||
// Handling BHP and SURFACE_RATE wells.
|
||||
V bhp_targets(nw,1);
|
||||
V rate_targets(nw,1);
|
||||
M rate_distr(nw, np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells_.ctrls[w];
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
bhp_targets[w] = wc->target[wc->current];
|
||||
rate_targets[w] = -1e100;
|
||||
} else if (wc->type[wc->current] == SURFACE_RATE) {
|
||||
bhp_targets[w] = -1e100;
|
||||
rate_targets[w] = wc->target[wc->current];
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
|
||||
}
|
||||
} else {
|
||||
THROW("Can only handle BHP and SURFACE_RATE type controls.");
|
||||
}
|
||||
}
|
||||
const ADB bhp_residual = bhp - bhp_targets;
|
||||
const ADB rate_residual = rate_distr * qs - rate_targets;
|
||||
// Choose bhp residual for positive bhp targets.
|
||||
Selector<double> bhp_selector(bhp_targets);
|
||||
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
||||
|
||||
ASSERT(np == 2);
|
||||
const ADB well_flow_res = vertcat(well_flow_residual_[0], well_flow_residual_[1]);
|
||||
const ADB well_res = vertcat(well_flow_res, well_residual_);
|
||||
total_residual_ = collapseJacs(vertcat(cell_residual_, well_res));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
ImpesTPFAAD::solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
||||
|
||||
V dx(total_residual_.size());
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual_.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
||||
}
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V dp = subset(dx, buildAllCells(nc));
|
||||
const V p = p0 - dp;
|
||||
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
std::vector<int> qs_dofs(np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
qs_dofs[w*np + phase] = nc + w*np + phase;
|
||||
}
|
||||
}
|
||||
const V dqs = subset(dx, qs_dofs);
|
||||
const V qs = qs0 - dqs;
|
||||
std::copy(&qs[0], &qs[0] + np*nw, well_state.wellRates().begin());
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<int> bhp_dofs(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
bhp_dofs[w] = nc + np*nw + w;
|
||||
}
|
||||
ASSERT(bhp_dofs.back() + 1 == total_residual_.size());
|
||||
const V dbhp = subset(dx, bhp_dofs);
|
||||
const V bhp = bhp0 - dbhp;
|
||||
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double
|
||||
ImpesTPFAAD::residualNorm() const
|
||||
{
|
||||
return total_residual_.value().matrix().norm();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
ImpesTPFAAD::computeFluxes(BlackoilState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
// This method computes state.faceflux(),
|
||||
// well_state.perfRates() and well_state.perfPress().
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
// Build cell sets.
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
// Construct matrix to map wells->perforations.
|
||||
M well_to_perf(well_cells.size(), nw);
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> w2p;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
||||
w2p.emplace_back(perf, w, 1.0);
|
||||
}
|
||||
}
|
||||
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
||||
const M perf_to_well = well_to_perf.transpose();
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
||||
|
||||
const V p = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V bhp = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
|
||||
const V p_perfcell = subset(p, well_cells);
|
||||
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const V nkgradp = transi * (ops_.ngrad * p.matrix()).array();
|
||||
|
||||
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
||||
const V p_perfwell = (well_to_perf*bhp.matrix()).array() + well_perf_dp;
|
||||
const V nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well);
|
||||
|
||||
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
||||
V perf_flux = V::Zero(nperf, 1);
|
||||
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const V cell_rho = fluidRho(phase, p, cells);
|
||||
const V head = nkgradp + (grav_ * cell_rho.matrix()).array();
|
||||
const UpwindSelector<double> upwind(grid_, ops_, head);
|
||||
const V kr = fluidKr(phase);
|
||||
const V mu = fluidMu(phase, p, cells);
|
||||
const V cell_mob = kr / mu;
|
||||
const V face_mob = upwind.select(cell_mob);
|
||||
const V well_kr = fluidKrWell(phase);
|
||||
const V well_mu = fluidMu(phase, p_perfwell, well_cells);
|
||||
const V well_mob = well_kr / well_mu;
|
||||
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
||||
|
||||
perf_flux += perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
flux += face_mob * head;
|
||||
}
|
||||
|
||||
V all_flux = superset(flux, ops_.internal_faces, grid_.number_of_faces);
|
||||
std::copy(all_flux.data(), all_flux.data() + grid_.number_of_faces, state.faceflux().begin());
|
||||
|
||||
perf_flux = -perf_flux; // well_state.perfRates() assumed to be inflows.
|
||||
std::copy(perf_flux.data(), perf_flux.data() + nperf, well_state.perfRates().begin());
|
||||
|
||||
std::copy(p_perfwell.data(), p_perfwell.data() + nperf, well_state.perfPress().begin());
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
V dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidFvf(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
V dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidRho(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
V b = fluidFvf(phase, p, cells);
|
||||
V rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidFvf(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidKr(const int phase) const
|
||||
{
|
||||
return kr_[phase];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidKrWell(const int phase) const
|
||||
{
|
||||
return well_kr_[phase];
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -25,169 +25,44 @@
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
}
|
||||
struct Wells;
|
||||
|
||||
namespace Opm {
|
||||
|
||||
class DerivedGeology;
|
||||
class LinearSolverInterface;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
|
||||
template <class GeoProps>
|
||||
class ImpesTPFAAD {
|
||||
/// Class for solving black-oil impes problems.
|
||||
/// Current known limitations:
|
||||
/// - pressure solve only
|
||||
/// - no miscibility
|
||||
/// - no gravity in wells or crossflow
|
||||
class ImpesTPFAAD
|
||||
{
|
||||
public:
|
||||
ImpesTPFAAD(const UnstructuredGrid& grid ,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const GeoProps& geo ,
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver)
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, wells_ (wells)
|
||||
, linsolver_(linsolver)
|
||||
// , pdepfdata_(grid.number_of_cells, fluid)
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, cell_residual_ (ADB::null())
|
||||
, well_flow_residual_ ()
|
||||
, well_residual_ (ADB::null())
|
||||
, total_residual_ (ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
well_flow_residual_.resize(np, ADB::null());
|
||||
|
||||
// Compute relperms once and for all (since saturations are explicit).
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
ASSERT(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
DataBlock well_s(nperf, np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_.comp_frac[np*w];
|
||||
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
||||
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
||||
}
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
const double atol = 1.0e-15;
|
||||
const double rtol = 5.0e-10;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(state, well_state);
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converged pressure solution");
|
||||
}
|
||||
else {
|
||||
computeFluxes(state);
|
||||
}
|
||||
}
|
||||
/// Construct impes solver.
|
||||
ImpesTPFAAD(const UnstructuredGrid& grid,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo,
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver);
|
||||
|
||||
/// Solve forward in time.
|
||||
/// Currently this will only modify
|
||||
/// state.pressure(), state.faceflux(), well_state.bhp()
|
||||
/// and well_state.wellRates().
|
||||
void solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
private:
|
||||
// Disallow copying and assignment
|
||||
ImpesTPFAAD(const ImpesTPFAAD& rhs);
|
||||
ImpesTPFAAD& operator=(const ImpesTPFAAD& rhs);
|
||||
|
||||
// Types
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
@ -195,10 +70,14 @@ namespace Opm {
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
// Data
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropsAdInterface& fluid_;
|
||||
const GeoProps& geo_ ;
|
||||
const DerivedGeology& geo_ ;
|
||||
const Wells& wells_;
|
||||
const LinearSolverInterface& linsolver_;
|
||||
HelperOps ops_;
|
||||
@ -210,327 +89,27 @@ namespace Opm {
|
||||
std::vector<V> kr_;
|
||||
std::vector<V> well_kr_;
|
||||
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
|
||||
void
|
||||
assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
|
||||
const V& pv = geo_.poreVolume();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
||||
const DataBlock qall = DataBlock::Zero(nc, np);
|
||||
const V delta_t = dt * V::Ones(nc, 1);
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
||||
|
||||
// Initialize AD variables: p (cell pressures), qs (well rates) and bhp (well bhp).
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<V> vars0 = { p0, qs0, bhp0 };
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
const ADB& p = vars[0];
|
||||
const ADB& qs = vars[1];
|
||||
const ADB& bhp = vars[2];
|
||||
std::vector<int> bpat = p.blockPattern();
|
||||
|
||||
// Compute T_ij * (p_i - p_j) and use for upwinding.
|
||||
const ADB nkgradp = transi * (ops_.ngrad * p);
|
||||
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
|
||||
|
||||
// Extract variables for perforation cell pressures
|
||||
// and corresponding perforation well pressures.
|
||||
const ADB p_perfcell = subset(p, well_cells);
|
||||
// Construct matrix to map wells->perforations.
|
||||
M well_to_perf(well_cells.size(), nw);
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> w2p;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
||||
w2p.emplace_back(perf, w, 1.0);
|
||||
}
|
||||
}
|
||||
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
||||
const M perf_to_well = well_to_perf.transpose();
|
||||
// Construct pressure difference vector for wells.
|
||||
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
||||
// Finally construct well perforation pressures and well flows.
|
||||
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
|
||||
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
||||
|
||||
cell_residual_ = ADB::constant(pv, bpat);
|
||||
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
||||
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_b = fluidFvf(phase, p, cells);
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
|
||||
const V kr = fluidKr(phase);
|
||||
// Explicitly not asking for derivatives of viscosity,
|
||||
// since they are not available yet.
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V cell_mob = kr / mu;
|
||||
const V face_mob = upwind.select(cell_mob);
|
||||
const V well_kr = fluidKrWell(phase);
|
||||
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
|
||||
const V well_mob = well_kr / well_mu;
|
||||
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
||||
const ADB flux = face_mob * (nkgradp + (grav_ * cell_rho));
|
||||
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
const ADB face_b = upwind.select(cell_b);
|
||||
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
||||
const V z0 = z0all.block(0, phase, nc, 1);
|
||||
const V q = qall .block(0, phase, nc, 1);
|
||||
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
||||
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b)
|
||||
+ well_contrib);
|
||||
const V qcontrib = delta_t * q;
|
||||
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
||||
const ADB component_contrib = pvcontrib + qcontrib;
|
||||
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
||||
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
||||
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
||||
std::vector<int> well_flow_res_phase_idx(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
well_flow_res_phase_idx[w] = w + phase*nw;
|
||||
}
|
||||
well_flow_residual_[phase] = well_rates - subset(qs, well_flow_res_phase_idx);
|
||||
}
|
||||
cell_residual_ = cell_residual_ + divcontrib_sum;
|
||||
// Handling BHP and SURFACE_RATE wells.
|
||||
V bhp_targets(nw,1);
|
||||
V rate_targets(nw,1);
|
||||
M rate_distr(nw, np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells_.ctrls[w];
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
bhp_targets[w] = wc->target[wc->current];
|
||||
rate_targets[w] = -1e100;
|
||||
} else if (wc->type[wc->current] == SURFACE_RATE) {
|
||||
bhp_targets[w] = -1e100;
|
||||
rate_targets[w] = wc->target[wc->current];
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
|
||||
}
|
||||
} else {
|
||||
THROW("Can only handle BHP and SURFACE_RATE type controls.");
|
||||
}
|
||||
}
|
||||
const ADB bhp_residual = bhp - bhp_targets;
|
||||
const ADB rate_residual = rate_distr * qs - rate_targets;
|
||||
// Choose bhp residual for positive bhp targets.
|
||||
Selector<double> bhp_selector(bhp_targets);
|
||||
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
||||
|
||||
ASSERT(np == 2);
|
||||
const ADB well_flow_res = vertcat(well_flow_residual_[0], well_flow_residual_[1]);
|
||||
const ADB well_res = vertcat(well_flow_res, well_residual_);
|
||||
total_residual_ = collapseJacs(vertcat(cell_residual_, well_res));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
||||
|
||||
#if HACK_INCOMPRESSIBLE_GRAVITY
|
||||
matr.coeffRef(0, 0) *= 2;
|
||||
#endif
|
||||
|
||||
V dx(total_residual_.size());
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual_.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
||||
}
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V dp = subset(dx, buildAllCells(nc));
|
||||
const V p = p0 - dp;
|
||||
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
std::vector<int> qs_dofs(np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
qs_dofs[w*np + phase] = nc + w*np + phase;
|
||||
}
|
||||
}
|
||||
const V dqs = subset(dx, qs_dofs);
|
||||
const V qs = qs0 - dqs;
|
||||
std::copy(&qs[0], &qs[0] + np*nw, well_state.wellRates().begin());
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<int> bhp_dofs(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
bhp_dofs[w] = nc + np*nw + w;
|
||||
}
|
||||
ASSERT(bhp_dofs.back() + 1 == total_residual_.size());
|
||||
const V dbhp = subset(dx, bhp_dofs);
|
||||
const V bhp = bhp0 - dbhp;
|
||||
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double
|
||||
residualNorm() const
|
||||
{
|
||||
return total_residual_.value().matrix().norm();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
computeFluxes(BlackoilState& state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const ADB p = ADB::constant(p0, cell_residual_.blockPattern());
|
||||
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const V nkgradp = transi * (ops_.ngrad * p0.matrix()).array();
|
||||
|
||||
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
||||
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const V head = nkgradp + (grav_ * cell_rho.value().matrix()).array();
|
||||
const UpwindSelector<double> upwind(grid_, ops_, head);
|
||||
const V kr = fluidKr(phase);
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V mf = upwind.select(kr / mu);
|
||||
|
||||
flux += mf * head;
|
||||
}
|
||||
V all_flux = superset(flux, ops_.internal_faces, grid_.number_of_faces);
|
||||
std::copy(all_flux.data(), all_flux.data() + grid_.number_of_faces, state.faceflux().data());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
V dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidFvf(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidKr(const int phase) const
|
||||
{
|
||||
return kr_[phase];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidKrWell(const int phase) const
|
||||
{
|
||||
return well_kr_[phase];
|
||||
}
|
||||
|
||||
// Methods for assembling and solving.
|
||||
void assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const;
|
||||
double residualNorm() const;
|
||||
void computeFluxes(BlackoilState& state, WellState& well_state) const;
|
||||
|
||||
// Fluid interface forwarding calls to correct methods of fluid_.
|
||||
V fluidMu(const int phase, const V& p, const std::vector<int>& cells) const;
|
||||
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
V fluidFvf(const int phase, const V& p, const std::vector<int>& cells) const;
|
||||
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
V fluidRho(const int phase, const V& p, const std::vector<int>& cells) const;
|
||||
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
V fluidKr(const int phase) const;
|
||||
V fluidKrWell(const int phase) const;
|
||||
};
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif /* OPM_IMPESTPFAAD_HEADER_INCLUDED */
|
||||
|
545
opm/autodiff/SimulatorCompressibleAd.cpp
Normal file
545
opm/autodiff/SimulatorCompressibleAd.cpp
Normal file
@ -0,0 +1,545 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/autodiff/SimulatorCompressibleAd.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAd.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/pressure/flow_bc.h>
|
||||
|
||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||
#include <opm/core/simulator/SimulatorTimer.hpp>
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
#include <opm/core/io/vtk/writeVtkData.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
||||
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
|
||||
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/props/rock/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/grid/ColumnExtract.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
|
||||
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#include <numeric>
|
||||
#include <fstream>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class SimulatorCompressibleAd::Impl
|
||||
{
|
||||
public:
|
||||
Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
|
||||
private:
|
||||
// Data.
|
||||
|
||||
// Parameters for output.
|
||||
bool output_;
|
||||
bool output_vtk_;
|
||||
std::string output_dir_;
|
||||
int output_interval_;
|
||||
// Parameters for well control
|
||||
bool check_well_controls_;
|
||||
int max_well_control_iterations_;
|
||||
// Parameters for transport solver.
|
||||
int num_transport_substeps_;
|
||||
bool use_segregation_split_;
|
||||
// Observed objects.
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
const RockCompressibility* rock_comp_props_;
|
||||
WellsManager& wells_manager_;
|
||||
const Wells* wells_;
|
||||
const std::vector<double>& src_;
|
||||
const FlowBoundaryConditions* bcs_;
|
||||
const double* gravity_;
|
||||
// Solvers
|
||||
BlackoilPropsAd fluid_;
|
||||
DerivedGeology geo_;
|
||||
ImpesTPFAAD psolver_;
|
||||
TransportSolverCompressibleTwophaseReorder tsolver_;
|
||||
// Needed by column-based gravity segregation solver.
|
||||
std::vector< std::vector<int> > columns_;
|
||||
// Misc. data
|
||||
std::vector<int> allcells_;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorCompressibleAd::SimulatorCompressibleAd(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
{
|
||||
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorCompressibleAd::run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
return pimpl_->run(timer, state, well_state);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void outputStateVtk(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write data in VTK format.
|
||||
std::ostringstream vtkfilename;
|
||||
vtkfilename << output_dir << "/vtk_files";
|
||||
boost::filesystem::path fpath(vtkfilename.str());
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
if (!vtkfile) {
|
||||
THROW("Failed to open " << vtkfilename.str());
|
||||
}
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
}
|
||||
|
||||
|
||||
static void outputStateMatlab(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
dm["surfvolume"] = &state.surfacevol();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
|
||||
// Write data (not grid) in Matlab format
|
||||
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << it->first;
|
||||
boost::filesystem::path fpath = fname.str();
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
file.precision(15);
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void outputWaterCut(const Opm::Watercut& watercut,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write water cut curve.
|
||||
std::string fname = output_dir + "/watercut.txt";
|
||||
std::ofstream os(fname.c_str());
|
||||
if (!os) {
|
||||
THROW("Failed to open " << fname);
|
||||
}
|
||||
watercut.write(os);
|
||||
}
|
||||
|
||||
|
||||
static void outputWellReport(const Opm::WellReport& wellreport,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write well report.
|
||||
std::string fname = output_dir + "/wellreport.txt";
|
||||
std::ofstream os(fname.c_str());
|
||||
if (!os) {
|
||||
THROW("Failed to open " << fname);
|
||||
}
|
||||
wellreport.write(os);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// \TODO: make CompressibleTpfa take src and bcs.
|
||||
SimulatorCompressibleAd::Impl::Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
rock_comp_props_(rock_comp_props),
|
||||
wells_manager_(wells_manager),
|
||||
wells_(wells_manager.c_wells()),
|
||||
src_(src),
|
||||
bcs_(bcs),
|
||||
gravity_(gravity),
|
||||
fluid_(props_),
|
||||
geo_(grid_, fluid_, gravity_),
|
||||
psolver_(grid_, fluid_, geo_, *wells_manager.c_wells(), linsolver),
|
||||
/* param.getDefault("nl_pressure_residual_tolerance", 0.0),
|
||||
param.getDefault("nl_pressure_change_tolerance", 1.0),
|
||||
param.getDefault("nl_pressure_maxiter", 10),
|
||||
gravity, */
|
||||
tsolver_(grid, props,
|
||||
param.getDefault("nl_tolerance", 1e-9),
|
||||
param.getDefault("nl_maxiter", 30))
|
||||
{
|
||||
// For output.
|
||||
output_ = param.getDefault("output", true);
|
||||
if (output_) {
|
||||
output_vtk_ = param.getDefault("output_vtk", true);
|
||||
output_dir_ = param.getDefault("output_dir", std::string("output"));
|
||||
// Ensure that output dir exists
|
||||
boost::filesystem::path fpath(output_dir_);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
output_interval_ = param.getDefault("output_interval", 1);
|
||||
}
|
||||
|
||||
// Well control related init.
|
||||
check_well_controls_ = param.getDefault("check_well_controls", false);
|
||||
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
|
||||
|
||||
// Transport related init.
|
||||
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
|
||||
use_segregation_split_ = param.getDefault("use_segregation_split", false);
|
||||
if (gravity != 0 && use_segregation_split_){
|
||||
tsolver_.initGravity(gravity);
|
||||
extractColumn(grid_, columns_);
|
||||
}
|
||||
|
||||
// Misc init.
|
||||
const int num_cells = grid.number_of_cells;
|
||||
allcells_.resize(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
allcells_[cell] = cell;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorCompressibleAd::Impl::run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
std::vector<double> transport_src;
|
||||
|
||||
// Initialisation.
|
||||
std::vector<double> porevol;
|
||||
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
|
||||
} else {
|
||||
computePorevolume(grid_, props_.porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
std::vector<double> initial_porevol = porevol;
|
||||
|
||||
// Main simulation loop.
|
||||
Opm::time::StopWatch pressure_timer;
|
||||
double ptime = 0.0;
|
||||
Opm::time::StopWatch transport_timer;
|
||||
double ttime = 0.0;
|
||||
Opm::time::StopWatch step_timer;
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
double init_surfvol[2] = { 0.0 };
|
||||
double inplace_surfvol[2] = { 0.0 };
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
|
||||
Opm::Watercut watercut;
|
||||
watercut.push(0.0, 0.0, 0.0);
|
||||
Opm::WellReport wellreport;
|
||||
std::vector<double> fractional_flows;
|
||||
std::vector<double> well_resflows_phase;
|
||||
if (wells_) {
|
||||
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
|
||||
wellreport.push(props_, *wells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
0.0, well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
std::fstream tstep_os;
|
||||
if (output_) {
|
||||
std::string filename = output_dir_ + "/step_timing.param";
|
||||
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
|
||||
}
|
||||
for (; !timer.done(); ++timer) {
|
||||
// Report timestep and (optionally) write state to disk.
|
||||
step_timer.start();
|
||||
timer.report(std::cout);
|
||||
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
|
||||
SimulatorReport sreport;
|
||||
|
||||
// Solve pressure equation.
|
||||
if (check_well_controls_) {
|
||||
computeFractionalFlow(props_, allcells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
fractional_flows);
|
||||
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
|
||||
}
|
||||
bool well_control_passed = !check_well_controls_;
|
||||
int well_control_iteration = 0;
|
||||
do {
|
||||
// Run solver.
|
||||
pressure_timer.start();
|
||||
std::vector<double> initial_pressure = state.pressure();
|
||||
psolver_.solve(timer.currentStepLength(), state, well_state);
|
||||
|
||||
#if 0
|
||||
// Renormalize pressure if both fluids and rock are
|
||||
// incompressible, and there are no pressure
|
||||
// conditions (bcs or wells). It is deemed sufficient
|
||||
// for now to renormalize using geometric volume
|
||||
// instead of pore volume.
|
||||
if (psolver_.singularPressure()) {
|
||||
// Compute average pressures of previous and last
|
||||
// step, and total volume.
|
||||
double av_prev_press = 0.0;
|
||||
double av_press = 0.0;
|
||||
double tot_vol = 0.0;
|
||||
const int num_cells = grid_.number_of_cells;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
|
||||
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
|
||||
tot_vol += grid_.cell_volumes[cell];
|
||||
}
|
||||
// Renormalization constant
|
||||
const double ren_const = (av_prev_press - av_press)/tot_vol;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
state.pressure()[cell] += ren_const;
|
||||
}
|
||||
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
|
||||
for (int well = 0; well < num_wells; ++well) {
|
||||
well_state.bhp()[well] += ren_const;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Stop timer and report.
|
||||
pressure_timer.stop();
|
||||
double pt = pressure_timer.secsSinceStart();
|
||||
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
||||
ptime += pt;
|
||||
sreport.pressure_time = pt;
|
||||
|
||||
// Optionally, check if well controls are satisfied.
|
||||
if (check_well_controls_) {
|
||||
Opm::computePhaseFlowRatesPerWell(*wells_,
|
||||
well_state.perfRates(),
|
||||
fractional_flows,
|
||||
well_resflows_phase);
|
||||
std::cout << "Checking well conditions." << std::endl;
|
||||
// For testing we set surface := reservoir
|
||||
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
|
||||
++well_control_iteration;
|
||||
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
|
||||
THROW("Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
|
||||
}
|
||||
if (!well_control_passed) {
|
||||
std::cout << "Well controls not passed, solving again." << std::endl;
|
||||
} else {
|
||||
std::cout << "Well conditions met." << std::endl;
|
||||
}
|
||||
}
|
||||
} while (!well_control_passed);
|
||||
|
||||
// Update pore volumes if rock is compressible.
|
||||
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
||||
initial_porevol = porevol;
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
|
||||
}
|
||||
|
||||
// Process transport sources from well flows.
|
||||
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
|
||||
|
||||
// Solve transport.
|
||||
transport_timer.start();
|
||||
double stepsize = timer.currentStepLength();
|
||||
if (num_transport_substeps_ != 1) {
|
||||
stepsize /= double(num_transport_substeps_);
|
||||
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
||||
}
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
||||
tsolver_.solve(&state.faceflux()[0], &state.pressure()[0],
|
||||
&initial_porevol[0], &porevol[0], &transport_src[0], stepsize,
|
||||
state.saturation(), state.surfacevol());
|
||||
double substep_injected[2] = { 0.0 };
|
||||
double substep_produced[2] = { 0.0 };
|
||||
Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
|
||||
substep_injected, substep_produced);
|
||||
injected[0] += substep_injected[0];
|
||||
injected[1] += substep_injected[1];
|
||||
produced[0] += substep_produced[0];
|
||||
produced[1] += substep_produced[1];
|
||||
if (gravity_ != 0 && use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, stepsize, state.saturation(), state.surfacevol());
|
||||
}
|
||||
}
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
sreport.transport_time = tt;
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
// Report volume balances.
|
||||
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
|
||||
tot_injected[0] += injected[0];
|
||||
tot_injected[1] += injected[1];
|
||||
tot_produced[0] += produced[0];
|
||||
tot_produced[1] += produced[1];
|
||||
std::cout.precision(5);
|
||||
const int width = 18;
|
||||
std::cout << "\nMass balance report.\n";
|
||||
std::cout << " Injected surface volumes: "
|
||||
<< std::setw(width) << injected[0]
|
||||
<< std::setw(width) << injected[1] << std::endl;
|
||||
std::cout << " Produced surface volumes: "
|
||||
<< std::setw(width) << produced[0]
|
||||
<< std::setw(width) << produced[1] << std::endl;
|
||||
std::cout << " Total inj surface volumes: "
|
||||
<< std::setw(width) << tot_injected[0]
|
||||
<< std::setw(width) << tot_injected[1] << std::endl;
|
||||
std::cout << " Total prod surface volumes: "
|
||||
<< std::setw(width) << tot_produced[0]
|
||||
<< std::setw(width) << tot_produced[1] << std::endl;
|
||||
const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
|
||||
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
|
||||
std::cout << " Initial - inplace + inj - prod: "
|
||||
<< std::setw(width) << balance[0]
|
||||
<< std::setw(width) << balance[1]
|
||||
<< std::endl;
|
||||
std::cout << " Relative mass error: "
|
||||
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
|
||||
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
|
||||
<< std::endl;
|
||||
std::cout.precision(8);
|
||||
|
||||
watercut.push(timer.currentTime() + timer.currentStepLength(),
|
||||
produced[0]/(produced[0] + produced[1]),
|
||||
tot_produced[0]/tot_porevol_init);
|
||||
if (wells_) {
|
||||
wellreport.push(props_, *wells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
timer.currentTime() + timer.currentStepLength(),
|
||||
well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
sreport.total_time = step_timer.secsSinceStart();
|
||||
if (output_) {
|
||||
sreport.reportParam(tstep_os);
|
||||
}
|
||||
}
|
||||
|
||||
if (output_) {
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
outputWaterCut(watercut, output_dir_);
|
||||
if (wells_) {
|
||||
outputWellReport(wellreport, output_dir_);
|
||||
}
|
||||
tstep_os.close();
|
||||
}
|
||||
|
||||
total_timer.stop();
|
||||
|
||||
SimulatorReport report;
|
||||
report.pressure_time = ptime;
|
||||
report.transport_time = ttime;
|
||||
report.total_time = total_timer.secsSinceStart();
|
||||
return report;
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
99
opm/autodiff/SimulatorCompressibleAd.hpp
Normal file
99
opm/autodiff/SimulatorCompressibleAd.hpp
Normal file
@ -0,0 +1,99 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SIMULATORCOMPRESSIBLEAD_HEADER_INCLUDED
|
||||
#define OPM_SIMULATORCOMPRESSIBLEAD_HEADER_INCLUDED
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
struct FlowBoundaryConditions;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
namespace parameter { class ParameterGroup; }
|
||||
class BlackoilPropertiesInterface;
|
||||
class RockCompressibility;
|
||||
class WellsManager;
|
||||
class LinearSolverInterface;
|
||||
class SimulatorTimer;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
struct SimulatorReport;
|
||||
|
||||
/// Class collecting all necessary components for a two-phase simulation.
|
||||
class SimulatorCompressibleAd
|
||||
{
|
||||
public:
|
||||
/// Initialise from parameters and objects to observe.
|
||||
/// \param[in] param parameters, this class accepts the following:
|
||||
/// parameter (default) effect
|
||||
/// -----------------------------------------------------------
|
||||
/// output (true) write output to files?
|
||||
/// output_dir ("output") output directoty
|
||||
/// output_interval (1) output every nth step
|
||||
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
|
||||
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
|
||||
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
|
||||
/// nl_maxiter (30) max nonlinear iterations in transport
|
||||
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
|
||||
/// num_transport_substeps (1) number of transport steps per pressure step
|
||||
/// use_segregation_split (false) solve for gravity segregation (if false,
|
||||
/// segregation is ignored).
|
||||
///
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
||||
/// \param[in] well_manager well manager, may manage no (null) wells
|
||||
/// \param[in] src source terms
|
||||
/// \param[in] bcs boundary conditions, treat as all noflow if null
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] gravity if non-null, gravity vector
|
||||
SimulatorCompressibleAd(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
/// Run the simulation.
|
||||
/// This will run succesive timesteps until timer.done() is true. It will
|
||||
/// modify the reservoir and well states.
|
||||
/// \param[in,out] timer governs the requested reporting timesteps
|
||||
/// \param[in,out] state state of reservoir: pressure, fluxes
|
||||
/// \param[in,out] well_state state of wells: bhp, perforation rates
|
||||
/// \return simulation report, with timing data
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
|
||||
private:
|
||||
class Impl;
|
||||
// Using shared_ptr instead of scoped_ptr since scoped_ptr requires complete type for Impl.
|
||||
boost::shared_ptr<Impl> pimpl_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_SIMULATORCOMPRESSIBLEAD_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user