Merge pull request #847 from daavid00/dispersivity

Support for mechanical dispersion
This commit is contained in:
Atgeirr Flø Rasmussen 2023-11-17 08:49:54 +01:00 committed by GitHub
commit e623ae6701
6 changed files with 601 additions and 10 deletions

View File

@ -0,0 +1,520 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for mechanical dispersion.
*/
#ifndef EWOMS_DISPERSION_MODULE_HH
#define EWOMS_DISPERSION_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <stdexcept>
namespace Opm {
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionModule
* \brief Provides the auxiliary methods required for consideration of the
* dispersion equation.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionModule;
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionExtensiveQuantities;
/*!
* \copydoc Opm::BlackOilDispersionModule
*/
template <class TypeTag>
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
enum { numPhases = FluidSystem::numPhases };
public:
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,false>;
/*!
* \brief Adds the dispersive flux to the flux vector over a flux
* integration point.
*/
template <class Context>
static void addDispersiveFlux(RateVector&,
const Context&,
unsigned,
unsigned)
{}
template<class FluidState, class Scalar>
static void addDispersiveFlux(RateVector&,
const FluidState&,
const FluidState&,
const Evaluation&,
const Scalar&)
{}
};
/*!
* \copydoc Opm::BlackOilDispersionModule
*/
template <class TypeTag>
class BlackOilDispersionModule<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
using Toolbox = MathToolbox<Evaluation>;
public:
using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities<TypeTag,true>;
/*!
* \brief Adds the mass flux due to dispersion to the flux vector over the
* flux integration point.
*/
template <class Context>
static void addDispersiveFlux(RateVector& flux, const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
// Only work if dispersion is enabled by DISPERC in the deck
if (!context.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
return;
}
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
const auto& dispersivity = extQuants.dispersivity();
const auto& normVelocityAvg = extQuants.normVelocityAvg();
addDispersiveFlux(flux, fluidStateI, fluidStateJ, dispersivity, normVelocityAvg);
}
/*!
* \brief Adds the mass flux due to dispersion to the flux vector over the
* integration point. Following the notation in blackoilmodel.hh,
* the dispersive flux for component \f$\kappa\f$ in phase \f$\alpha\f$
* is given by: \f$-b_\alpha E||\mathrm{v}_\alpha||\mathbf{grad}X_\alpha^\kappa\f$,
* where \f$b_\alpha\f$ is the shrinkage/expansion factor [-], E is the isotropic
* dispersivity coefficient [L], \f$\mathrm{v}_\alpha\f$ is the filter velocity
* [L/T], and \f$X_\alpha^\kappa\f$ the component mass fraction [-]. Each component mass
* fraction can be computed using \f$R_s,\;R_v,\;R_{sw},\;R_{vw}\f$. For example,
* \f$X_w^G=\frac{R_{sw}}{R_{sw}+\rho_w/\rho_g}\f$, where \f$\rho_w\f$ and \f$\rho_g\f$
* are the reference densities.
* Following the implementation of the diffusive flux (blackoildiffusionmodule.hh) and considering
* the case for the water phase and gas component as an example, for cells i and j, the discrete version
* of the dispersive flux at the face's integration point is given by
* \f$-b_{w,ij}v_{w,ij}(\frac{1}{R_{sw,ij}+\rho_w/\rho_g})D_{ij}(R_{sw,i}-R_{sw,j})\f$
* where \f$b_{w,ij}\f$, \f$v_{w,ij}\f$, and \f$R_{sw,ij}\f$ are computed using the arithmetic mean, and
* the ratio \f$\frac{1}{R_{sw,ij}+\rho_w/\rho_g}\f$ is denoted as conversion factor. The dispersivity
* \f$D_{ij}\f$ is computed in ecltransmissibility_impl.hh, using the dispersion coefficients \f$E_i\f$
* and \f$E_j\f$.
*/
template<class FluidState, class Scalar>
static void addDispersiveFlux(RateVector& flux,
const FluidState& fluidStateI,
const FluidState& fluidStateJ,
const Evaluation& dispersivity,
const Scalar& normVelocityAvg)
{
unsigned pvtRegionIndex = fluidStateI.pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
// no dispersion in water for blackoil models unless water can contain dissolved gas
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
continue;
}
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
continue;
}
// arithmetic mean of the phase's b factor
Evaluation bAvg = fluidStateI.invB(phaseIdx);
bAvg += Toolbox::value(fluidStateJ.invB(phaseIdx));
bAvg /= 2;
Evaluation convFactor = 1.0;
Evaluation diffR = 0.0;
if (FluidSystem::enableDissolvedGas() && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && phaseIdx == FluidSystem::oilPhaseIdx) {
Evaluation rsAvg = (fluidStateI.Rs() + Toolbox::value(fluidStateJ.Rs())) / 2;
convFactor = 1.0 / (toMassFractionGasOil(pvtRegionIndex) + rsAvg);
diffR = fluidStateI.Rs() - Toolbox::value(fluidStateJ.Rs());
}
if (FluidSystem::enableVaporizedOil() && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && phaseIdx == FluidSystem::gasPhaseIdx) {
Evaluation rvAvg = (fluidStateI.Rv() + Toolbox::value(fluidStateJ.Rv())) / 2;
convFactor = toMassFractionGasOil(pvtRegionIndex) / (1.0 + rvAvg*toMassFractionGasOil(pvtRegionIndex));
diffR = fluidStateI.Rv() - Toolbox::value(fluidStateJ.Rv());
}
if (FluidSystem::enableDissolvedGasInWater() && phaseIdx == FluidSystem::waterPhaseIdx) {
Evaluation rsAvg = (fluidStateI.Rsw() + Toolbox::value(fluidStateJ.Rsw())) / 2;
convFactor = 1.0 / (toMassFractionGasWater(pvtRegionIndex) + rsAvg);
diffR = fluidStateI.Rsw() - Toolbox::value(fluidStateJ.Rsw());
}
if (FluidSystem::enableVaporizedWater() && phaseIdx == FluidSystem::gasPhaseIdx) {
Evaluation rvAvg = (fluidStateI.Rvw() + Toolbox::value(fluidStateJ.Rvw())) / 2;
convFactor = toMassFractionGasWater(pvtRegionIndex)/ (1.0 + rvAvg*toMassFractionGasWater(pvtRegionIndex));
diffR = fluidStateI.Rvw() - Toolbox::value(fluidStateJ.Rvw());
}
// mass flux of solvent component
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
flux[conti0EqIdx + activeSolventCompIdx] +=
- bAvg
* normVelocityAvg[phaseIdx]
* convFactor
* dispersivity
* diffR;
// mass flux of solute component
unsigned soluteCompIdx = FluidSystem::soluteComponentIndex(phaseIdx);
unsigned activeSoluteCompIdx = Indices::canonicalToActiveComponentIndex(soluteCompIdx);
flux[conti0EqIdx + activeSoluteCompIdx] +=
bAvg
* normVelocityAvg[phaseIdx]
* convFactor
* dispersivity
* diffR;
}
}
private:
static Scalar toMassFractionGasOil (unsigned regionIdx) {
Scalar rhoO = FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, regionIdx);
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
return rhoO / rhoG;
}
static Scalar toMassFractionGasWater (unsigned regionIdx) {
Scalar rhoW = FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, regionIdx);
Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
return rhoW / rhoG;
}
};
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the
* calculation of dispersive fluxes.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionIntensiveQuantities;
/*!
* \copydoc Opm::DispersionIntensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
/*!
* \brief Returns the max. norm of the filter velocity of the cell.
*/
Scalar normVelocityCell(unsigned, unsigned) const
{
throw std::logic_error("Method normVelocityCell() "
"does not make sense if dispersion is disabled");
}
protected:
/*!
* \brief Update the quantities required to calculate dispersive
* fluxes.
*/
template<class ElementContext>
void update_(ElementContext&,
unsigned,
unsigned)
{ }
};
/*!
* \copydoc Opm::DispersionIntensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionIntensiveQuantities<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
public:
/*!
* \brief Returns the max. norm of the filter velocity of the cell.
*/
Scalar normVelocityCell(unsigned phaseIdx) const
{
return normVelocityCell_[phaseIdx];
}
protected:
/*!
* \brief Update the quantities required to calculate dispersive
* mass fluxes. This considers the linear disperison model
* described in the SPE CSP11 benchmark document (eq. 2.3)
* https://github.com/Simulation-Benchmarks/11thSPE-CSP/
* blob/main/description/spe_csp11_description.pdf
* The maximum norm is used to compute the cell
* filter velocity value of the corresponding phase.
*/
template<class ElementContext>
void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
// Only work if dispersion is enabled by DISPERC in the deck
if (!elemCtx.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
return;
}
const auto& problem = elemCtx.simulator().problem();
if (problem.model().linearizer().getVelocityInfo().empty()) {
return;
}
const std::array<int, 3> phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
const std::array<int, 3> compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
const auto& velocityInf = problem.model().linearizer().getVelocityInfo();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
auto velocityInfos = velocityInf[globalDofIdx];
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
normVelocityCell_[i] = 0;
}
for (auto& velocityInfo : velocityInfos) {
for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
if (FluidSystem::phaseIsActive(phaseIdxs[i])) {
normVelocityCell_[phaseIdxs[i]] = max( normVelocityCell_[phaseIdxs[i]],
std::abs( velocityInfo.velocity[conti0EqIdx
+ Indices::canonicalToActiveComponentIndex(compIdxs[i])] ));
}
}
}
}
private:
Scalar normVelocityCell_[numPhases];
};
/*!
* \ingroup Dispersion
* \class Opm::BlackOilDispersionExtensiveQuantities
*
* \brief Provides the quantities required to calculate dispersive mass fluxes.
*/
template <class TypeTag, bool enableDispersion>
class BlackOilDispersionExtensiveQuantities;
/*!
* \copydoc Opm::DispersionExtensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/false>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
enum { numPhases = FluidSystem::numPhases };
protected:
/*!
* \brief Update the quantities required to calculate
* the dispersive fluxes.
*/
void update_(const ElementContext&,
unsigned,
unsigned)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context&,
unsigned,
unsigned,
const FluidState&)
{}
public:
using ScalarArray = Scalar[numPhases];
static void update(ScalarArray&,
const IntensiveQuantities&,
const IntensiveQuantities&)
{}
/*!
* \brief The dispersivity the face.
*
*/
const Scalar& dispersivity() const
{
throw std::logic_error("The method dispersivity() does not "
"make sense if dispersion is disabled.");
}
/*!
* \brief The effective filter velocity coefficient in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& normVelocityAvg(unsigned) const
{
throw std::logic_error("The method normVelocityAvg() "
"does not make sense if dispersion is disabled.");
}
};
/*!
* \copydoc Opm::BlackOilDispersionExtensiveQuantities
*/
template <class TypeTag>
class BlackOilDispersionExtensiveQuantities<TypeTag, /*enableDispersion=*/true>
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Toolbox = MathToolbox<Evaluation>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
public:
using ScalarArray = Scalar[numPhases];
static void update(ScalarArray& normVelocityAvg,
const IntensiveQuantities& intQuantsInside,
const IntensiveQuantities& intQuantsOutside)
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
// no dispersion in water for blackoil models unless water can contain dissolved gas
if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
continue;
}
// no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
continue;
}
// use the arithmetic average for the effective
// velocity coefficients at the face's integration point.
normVelocityAvg[phaseIdx] = 0.5 *
( intQuantsInside.normVelocityCell(phaseIdx) +
intQuantsOutside.normVelocityCell(phaseIdx) );
Valgrind::CheckDefined(normVelocityAvg[phaseIdx]);
}
}
protected:
template <class Context, class FluidState>
void updateBoundary_(const Context&,
unsigned,
unsigned,
const FluidState&)
{
throw std::runtime_error("Not implemented: Dispersion across boundary not implemented for blackoil");
}
public:
/*!
* \brief The dispersivity of the face.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& dispersivity() const
{ return dispersivity_; }
/*!
* \brief The effective velocity coefficient in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Scalar& normVelocityAvg(unsigned phaseIdx) const
{ return normVelocityAvg_[phaseIdx]; }
const auto& normVelocityAvg() const{
return normVelocityAvg_;
}
private:
Scalar dispersivity_;
ScalarArray normVelocityAvg_;
};
} // namespace Opm
#endif

View File

@ -36,6 +36,7 @@
#include "blackoilbrinemodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoildiffusionmodule.hh"
#include "blackoildispersionmodule.hh"
#include "blackoilmicpmodules.hh"
#include <opm/common/TimingMacros.hpp>
@ -70,6 +71,7 @@ class BlackOilIntensiveQuantities
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
, public BlackOilDiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
, public BlackOilDispersionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDispersion>() >
, public BlackOilSolventIntensiveQuantities<TypeTag>
, public BlackOilExtboIntensiveQuantities<TypeTag>
, public BlackOilPolymerIntensiveQuantities<TypeTag>
@ -103,6 +105,7 @@ class BlackOilIntensiveQuantities
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
@ -124,6 +127,7 @@ class BlackOilIntensiveQuantities
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
using DiffusionIntensiveQuantities = BlackOilDiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
using DispersionIntensiveQuantities = BlackOilDispersionIntensiveQuantities<TypeTag, enableDispersion>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
@ -473,6 +477,9 @@ public:
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
// update the dispersion specific quantities of the intensive quantities
DispersionIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
#ifndef NDEBUG
// some safety checks in debug mode
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {

View File

@ -36,6 +36,7 @@
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoildiffusionmodule.hh"
#include "blackoildispersionmodule.hh"
#include "blackoilmicpmodules.hh"
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
@ -92,6 +93,7 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
static constexpr bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>();
static constexpr bool enableBrine = getPropValue<TypeTag, Properties::EnableBrine>();
static constexpr bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
static constexpr bool enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>();
static constexpr bool enableMICP = getPropValue<TypeTag, Properties::EnableMICP>();
using SolventModule = BlackOilSolventModule<TypeTag>;
@ -101,6 +103,7 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using Toolbox = MathToolbox<Evaluation>;
@ -119,6 +122,7 @@ public:
double inAlpha;
double outAlpha;
double diffusivity;
double dispersivity;
};
/*!
* \copydoc FvBaseLocalResidual::computeStorage
@ -296,8 +300,9 @@ public:
const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
const Scalar dispersivity = problem.dispersivity(globalIndexEx, globalIndexIn);
const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, facedir, Vin, Vex, inAlpha, outAlpha, diffusivity};
const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, facedir, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity};
calculateFluxes_(flux,
darcy,
@ -441,7 +446,7 @@ public:
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with diffusion (if present)
// deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
if constexpr(enableDiffusion){
typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
DiffusionModule::ExtensiveQuantities::update(effectiveDiffusionCoefficient, intQuantsIn, intQuantsEx);
@ -453,6 +458,19 @@ public:
tmpdiffusivity,
effectiveDiffusionCoefficient);
}
// deal with dispersion (if present). opm-models expects per area flux (added in the tmpdispersivity).
if constexpr(enableDispersion){
typename DispersionModule::ExtensiveQuantities::ScalarArray normVelocityAvg;
DispersionModule::ExtensiveQuantities::update(normVelocityAvg, intQuantsIn, intQuantsEx);
const Scalar dispersivity = nbInfo.dispersivity;
const Scalar tmpdispersivity = dispersivity / faceArea;
DispersionModule::addDispersiveFlux(flux,
intQuantsIn.fluidState(),
intQuantsEx.fluidState(),
tmpdispersivity,
normVelocityAvg);
}
// deal with micp (if present)
static_assert(!enableMICP, "Relevant computeFlux() method must be implemented for this module before enabling.");

View File

@ -53,6 +53,7 @@
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkblackoilmodule.hh>
#include "blackoildiffusionmodule.hh"
#include "blackoildispersionmodule.hh"
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
@ -177,6 +178,10 @@ struct EnableEnergy<TypeTag, TTag::BlackOilModel> { static constexpr bool value
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! disable disperison by default
template<class TypeTag>
struct EnableDispersion<TypeTag, TTag::BlackOilModel> { static constexpr bool value = false; };
//! by default, scale the energy equation by the inverse of the energy required to heat
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
@ -227,7 +232,7 @@ namespace Opm {
* \f]
*
* Since the gas and water phases are assumed to be immiscible, this
* is sufficint to calculate their density. For the formation volume
* is sufficient to calculate their density. For the formation volume
* factor of the the oil phase \f$B_o\f$ determines the density of
* *saturated* oil, i.e. the density of the oil phase if some gas
* phase is present.
@ -288,6 +293,7 @@ private:
enum { numComponents = FluidSystem::numComponents };
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
static constexpr bool waterEnabled = Indices::waterEnabled;
@ -297,6 +303,7 @@ private:
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using EnergyModule = BlackOilEnergyModule<TypeTag>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using MICPModule = BlackOilMICPModule<TypeTag>;
public:

View File

@ -80,6 +80,9 @@ struct EnableGravity { using type = UndefinedProperty; };
//! Enable diffusive fluxes?
template<class TypeTag, class MyTypeTag>
struct EnableDiffusion { using type = UndefinedProperty; };
//! Enable dispersive fluxes?
template<class TypeTag, class MyTypeTag>
struct EnableDispersion { using type = UndefinedProperty; };
} // namespace Opm::Properties

View File

@ -329,6 +329,16 @@ public:
return floresInfo_;
}
/*!
* \brief Return constant reference to the velocityInfo.
*
* (This object is only non-empty if the DISPERC keyword is true.)
*/
const auto& getVelocityInfo() const{
return velocityInfo_;
}
void updateDiscretizationParameters()
{
updateStoredTransmissibilities();
@ -451,6 +461,7 @@ private:
Scalar outAlpha {0.};
FaceDirection dirId = FaceDirection::Unknown;
Scalar diffusivity {0.};
Scalar dispersivity {0.};
if constexpr(enableEnergy){
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
@ -458,10 +469,13 @@ private:
if constexpr(enableDiffusion){
diffusivity = problem_().diffusivity(myIdx, neighborIdx);
}
if (simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
dispersivity = problem_().dispersivity(myIdx, neighborIdx);
}
if (materialLawManager->hasDirectionalRelperms()) {
dirId = scvf.faceDirFromDirId();
}
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity}, nullptr};
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity}, nullptr};
}
}
@ -522,15 +536,17 @@ private:
jacobian_->clear();
}
// Initialize the flows and flores sparse tables
// Initialize the flows, flores, and velocity sparse tables
void createFlows_()
{
OPM_TIMEBLOCK(createFlows);
// If FLOWS/FLORES is set in any RPTRST in the schedule, then we initializate the sparse tables
// For now, do the same also if any block flows are requested (TODO: only save requested cells...)
// If DISPERC is in the deck, we initialize the sparse table here as well.
const bool anyFlows = simulator_().problem().eclWriter()->eclOutputModule().anyFlows();
const bool anyFlores = simulator_().problem().eclWriter()->eclOutputModule().anyFlores();
if ((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) {
const bool enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
if (((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) && !enableDispersion) {
return;
}
const auto& model = model_();
@ -539,6 +555,7 @@ private:
unsigned numCells = model.numTotalDof();
std::unordered_multimap<int, std::pair<int, int>> nncIndices;
std::vector<FlowInfo> loc_flinfo;
std::vector<VelocityInfo> loc_vlinfo;
unsigned int nncId = 0;
VectorBlock flow(0.0);
@ -555,12 +572,16 @@ private:
if (anyFlores) {
floresInfo_.reserve(numCells, 6 * numCells);
}
if (enableDispersion) {
velocityInfo_.reserve(numCells, 6 * numCells);
}
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
loc_flinfo.resize(stencil.numDof() - 1);
loc_vlinfo.resize(stencil.numDof() - 1);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
if (dofIdx > 0) {
@ -579,6 +600,7 @@ private:
}
}
loc_flinfo[dofIdx - 1] = FlowInfo{faceId, flow, nncId};
loc_vlinfo[dofIdx - 1] = VelocityInfo{flow};
}
}
if (anyFlows) {
@ -587,6 +609,9 @@ private:
if (anyFlores) {
floresInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
if (enableDispersion) {
velocityInfo_.appendRow(loc_vlinfo.begin(), loc_vlinfo.end());
}
}
}
}
@ -626,7 +651,7 @@ private:
// We do not call resetSystem_() here, since that will set
// the full system to zero, not just our part.
// Instead, that must be called before starting the linearization.
const bool& enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
const bool& enableFlows = simulator_().problem().eclWriter()->eclOutputModule().hasFlows() ||
simulator_().problem().eclWriter()->eclOutputModule().hasBlockFlows();
const bool& enableFlores = simulator_().problem().eclWriter()->eclOutputModule().hasFlores();
@ -661,6 +686,11 @@ private:
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
adres *= nbInfo.res_nbinfo.faceArea;
if (enableDispersion) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
velocityInfo_[globI][loc].velocity[phaseIdx] = darcyFlux[phaseIdx].value() / nbInfo.res_nbinfo.faceArea;
}
}
if (enableFlows) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value();
@ -823,6 +853,12 @@ private:
SparseTable<FlowInfo> flowsInfo_;
SparseTable<FlowInfo> floresInfo_;
struct VelocityInfo
{
VectorBlock velocity;
};
SparseTable<VelocityInfo> velocityInfo_;
using ScalarFluidState = typename IntensiveQuantities::ScalarFluidState;
struct BoundaryConditionData
{