mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-23 09:46:24 -06:00
Merge pull request #428 from andlaus/EclNewtonMethod
ebos: introduce an EclNewtonMethod
This commit is contained in:
commit
f971caeae9
232
ebos/eclnewtonmethod.hh
Normal file
232
ebos/eclnewtonmethod.hh
Normal file
@ -0,0 +1,232 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::EclNewtonMethod
|
||||
*/
|
||||
#ifndef EWOMS_ECL_NEWTON_METHOD_HH
|
||||
#define EWOMS_ECL_NEWTON_METHOD_HH
|
||||
|
||||
#include <ewoms/models/blackoil/blackoilnewtonmethod.hh>
|
||||
#include <ewoms/common/signum.hh>
|
||||
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
BEGIN_PROPERTIES
|
||||
|
||||
NEW_PROP_TAG(EclNewtonSumTolerance);
|
||||
NEW_PROP_TAG(EclNewtonStrictIterations);
|
||||
NEW_PROP_TAG(EclNewtonRelaxedVolumeFraction);
|
||||
NEW_PROP_TAG(EclNewtonSumToleranceExponent);
|
||||
NEW_PROP_TAG(EclNewtonRelaxedTolerance);
|
||||
|
||||
END_PROPERTIES
|
||||
|
||||
namespace Ewoms {
|
||||
|
||||
/*!
|
||||
* \brief A newton solver which is ebos specific.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclNewtonMethod : public BlackOilNewtonMethod<TypeTag>
|
||||
{
|
||||
typedef BlackOilNewtonMethod<TypeTag> ParentType;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, DiscNewtonMethod) DiscNewtonMethod;
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) GlobalEqVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Linearizer) Linearizer;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
|
||||
static const unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
|
||||
|
||||
static constexpr int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
||||
static constexpr int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
||||
static constexpr int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
|
||||
|
||||
friend NewtonMethod<TypeTag>;
|
||||
friend DiscNewtonMethod;
|
||||
friend ParentType;
|
||||
|
||||
public:
|
||||
EclNewtonMethod(Simulator& simulator) : ParentType(simulator)
|
||||
{
|
||||
errorPvFraction_ = 1.0;
|
||||
relaxedMaxPvFraction_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclNewtonRelaxedVolumeFraction);
|
||||
|
||||
sumTolerance_ = 0.0; // this gets determined in the error calculation proceedure
|
||||
relaxedTolerance_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclNewtonRelaxedTolerance);
|
||||
|
||||
numStrictIterations_ = EWOMS_GET_PARAM(TypeTag, int, EclNewtonStrictIterations);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the Newton method.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{
|
||||
ParentType::registerParameters();
|
||||
|
||||
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclNewtonSumTolerance,
|
||||
"The maximum error tolerated by the Newton"
|
||||
"method for considering a solution to be "
|
||||
"converged");
|
||||
EWOMS_REGISTER_PARAM(TypeTag, int, EclNewtonStrictIterations,
|
||||
"The number of Newton iterations where the"
|
||||
" volumetric error is considered.");
|
||||
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclNewtonRelaxedVolumeFraction,
|
||||
"The fraction of the pore volume of the reservoir "
|
||||
"where the volumetric error may be voilated during "
|
||||
"strict Newton iterations.");
|
||||
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclNewtonSumToleranceExponent,
|
||||
"The the exponent used to scale the sum tolerance by "
|
||||
"the total pore volume of the reservoir.");
|
||||
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclNewtonRelaxedTolerance,
|
||||
"The maximum error which the volumetric residual "
|
||||
"may exhibit if it is in a 'relaxed' "
|
||||
"region during a strict iteration.");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns true if the error of the solution is below the
|
||||
* tolerance.
|
||||
*/
|
||||
bool converged() const
|
||||
{
|
||||
if (errorPvFraction_ < relaxedMaxPvFraction_)
|
||||
return (this->error_ < relaxedTolerance_ && errorSum_ < sumTolerance_) ;
|
||||
else if (this->numIterations() > numStrictIterations_)
|
||||
return (this->error_ < relaxedTolerance_ && errorSum_ < sumTolerance_) ;
|
||||
|
||||
return this->error_ <= this->tolerance() && errorSum_ <= sumTolerance_;
|
||||
}
|
||||
|
||||
void preSolve_(const SolutionVector& currentSolution OPM_UNUSED,
|
||||
const GlobalEqVector& currentResidual)
|
||||
{
|
||||
const auto& constraintsMap = this->model().linearizer().constraintsMap();
|
||||
this->lastError_ = this->error_;
|
||||
Scalar newtonMaxError = EWOMS_GET_PARAM(TypeTag, Scalar, NewtonMaxError);
|
||||
|
||||
// calculate the error as the maximum weighted tolerance of
|
||||
// the solution's residual
|
||||
this->error_ = 0.0;
|
||||
Dune::FieldVector<Scalar, numEq> componentSumError;
|
||||
std::fill(componentSumError.begin(), componentSumError.end(), 0.0);
|
||||
Scalar sumPv = 0.0;
|
||||
errorPvFraction_ = 0.0;
|
||||
const Scalar dt = this->simulator_.timeStepSize();
|
||||
for (unsigned dofIdx = 0; dofIdx < currentResidual.size(); ++dofIdx) {
|
||||
// do not consider auxiliary DOFs for the error
|
||||
if (dofIdx >= this->model().numGridDof()
|
||||
|| this->model().dofTotalVolume(dofIdx) <= 0.0)
|
||||
continue;
|
||||
|
||||
if (!this->model().isLocalDof(dofIdx))
|
||||
continue;
|
||||
|
||||
// also do not consider DOFs which are constraint
|
||||
if (this->enableConstraints_()) {
|
||||
if (constraintsMap.count(dofIdx) > 0)
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto& r = currentResidual[dofIdx];
|
||||
const double pvValue =
|
||||
this->simulator_.problem().porosity(dofIdx)
|
||||
* this->model().dofTotalVolume(dofIdx);
|
||||
sumPv += pvValue;
|
||||
bool cnvViolated = false;
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < r.size(); ++eqIdx) {
|
||||
Scalar tmpError = r[eqIdx] * dt * this->model().eqWeight(dofIdx, eqIdx) / pvValue;
|
||||
Scalar tmpError2 = r[eqIdx] * this->model().eqWeight(dofIdx, eqIdx);
|
||||
|
||||
this->error_ = Opm::max(std::abs(tmpError), this->error_);
|
||||
|
||||
if (std::abs(tmpError) > this->tolerance_)
|
||||
cnvViolated = true;
|
||||
|
||||
componentSumError[eqIdx] += std::abs(tmpError2);
|
||||
}
|
||||
if (cnvViolated)
|
||||
errorPvFraction_ += pvValue;
|
||||
}
|
||||
|
||||
// take the other processes into account
|
||||
this->error_ = this->comm_.max(this->error_);
|
||||
componentSumError = this->comm_.sum(componentSumError);
|
||||
sumPv = this->comm_.sum(sumPv);
|
||||
errorPvFraction_ = this->comm_.sum(errorPvFraction_);
|
||||
|
||||
componentSumError /= sumPv;
|
||||
componentSumError *= dt;
|
||||
|
||||
errorPvFraction_ /= sumPv;
|
||||
|
||||
errorSum_ = 0;
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
errorSum_ = std::max(std::abs(componentSumError[eqIdx]), errorSum_);
|
||||
|
||||
// scale the tolerance for the total error with the pore volume. by default, the
|
||||
// exponent is 1/3, i.e., cubic root.
|
||||
Scalar x = EWOMS_GET_PARAM(TypeTag, Scalar, EclNewtonSumTolerance);
|
||||
Scalar y = EWOMS_GET_PARAM(TypeTag, Scalar, EclNewtonSumToleranceExponent);
|
||||
sumTolerance_ = x*std::pow(sumPv, y);
|
||||
|
||||
// make sure that the error never grows beyond the maximum
|
||||
// allowed one
|
||||
if (this->error_ > newtonMaxError)
|
||||
throw Opm::NumericalIssue("Newton: Error "+std::to_string(double(this->error_))
|
||||
+" is larger than maximum allowed error of "
|
||||
+std::to_string(double(newtonMaxError)));
|
||||
|
||||
// make sure that the error never grows beyond the maximum
|
||||
// allowed one
|
||||
if (errorSum_ > newtonMaxError)
|
||||
throw Opm::NumericalIssue("Newton: Sum of the error "+std::to_string(double(errorSum_))
|
||||
+" is larger than maximum allowed error of "
|
||||
+std::to_string(double(newtonMaxError)));
|
||||
}
|
||||
|
||||
private:
|
||||
Scalar errorPvFraction_;
|
||||
Scalar errorSum_;
|
||||
|
||||
Scalar relaxedTolerance_;
|
||||
Scalar relaxedMaxPvFraction_;
|
||||
|
||||
Scalar sumTolerance_;
|
||||
|
||||
int numStrictIterations_;
|
||||
};
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
@ -60,6 +60,7 @@
|
||||
#include "ecldummygradientcalculator.hh"
|
||||
#include "eclfluxmodule.hh"
|
||||
#include "eclbaseaquifermodel.hh"
|
||||
#include "eclnewtonmethod.hh"
|
||||
#include "ecltracermodel.hh"
|
||||
#include "vtkecltracermodule.hh"
|
||||
|
||||
@ -235,14 +236,35 @@ SET_SCALAR_PROP(EclBaseProblem, EndTime, 1e100);
|
||||
// not millions of trillions of years, that is...)
|
||||
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
|
||||
|
||||
// increase the default raw tolerance for the newton solver to 10^-4 because this is what
|
||||
// everone else seems to be doing...
|
||||
SET_SCALAR_PROP(EclBaseProblem, NewtonRawTolerance, 1e-4);
|
||||
// the default for the allowed volumetric error for oil per second
|
||||
SET_SCALAR_PROP(EclBaseProblem, NewtonRawTolerance, 1e-2);
|
||||
|
||||
// reduce the maximum allowed Newton error to 0.1 kg/(m^3 s). The rationale is that if
|
||||
// the error is above that limit, the time step is unlikely to succeed anyway and we can
|
||||
// thus abort the futile attempt early.
|
||||
SET_SCALAR_PROP(EclBaseProblem, NewtonMaxError, 0.1);
|
||||
// the tolerated amount of "incorrect" amount of oil per time step for the complete
|
||||
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
|
||||
// will tolerate larger residuals.
|
||||
SET_SCALAR_PROP(EclBaseProblem, EclNewtonSumTolerance, 1e-4);
|
||||
|
||||
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
|
||||
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
|
||||
// not linear, we use the cube root of the overall pore volume by default, i.e., the
|
||||
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
|
||||
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
|
||||
// pore volume of 10^3 m^3 will tolerate 10 times as much.
|
||||
SET_SCALAR_PROP(EclBaseProblem, EclNewtonSumToleranceExponent, 1.0/3.0);
|
||||
|
||||
// set number of Newton iterations where the volumetric residual is considered for
|
||||
// convergence
|
||||
SET_INT_PROP(EclBaseProblem, EclNewtonStrictIterations, 8);
|
||||
|
||||
// set fraction of the pore volume where the volumetric residual may be violated during
|
||||
// strict Newton iterations
|
||||
SET_SCALAR_PROP(EclBaseProblem, EclNewtonRelaxedVolumeFraction, 0.03);
|
||||
|
||||
// the maximum volumetric error of a cell in the relaxed region
|
||||
SET_SCALAR_PROP(EclBaseProblem, EclNewtonRelaxedTolerance, 1e9);
|
||||
|
||||
// Ignore the maximum error mass for early termination of the newton method.
|
||||
SET_SCALAR_PROP(EclBaseProblem, NewtonMaxError, 10e9);
|
||||
|
||||
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
|
||||
// step succeeds at more than 14 Newton iteration is rather small
|
||||
@ -281,6 +303,10 @@ SET_TYPE_PROP(EclBaseProblem, FluxModule, Ewoms::EclTransFluxModule<TypeTag>);
|
||||
// Use the dummy gradient calculator in order not to do unnecessary work.
|
||||
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
|
||||
|
||||
// Use a custom Newton-Raphson method class for ebos in order to attain more
|
||||
// sophisticated update and error computation mechanisms
|
||||
SET_TYPE_PROP(EclBaseProblem, NewtonMethod, Ewoms::EclNewtonMethod<TypeTag>);
|
||||
|
||||
// The frequency of writing restart (*.ers) files. This is the number of time steps
|
||||
// between writing restart files
|
||||
SET_INT_PROP(EclBaseProblem, RestartWritingInterval, 0xffffff); // disable
|
||||
|
Loading…
Reference in New Issue
Block a user