Commit Graph

3 Commits

Author SHA1 Message Date
Bård Skaflestad
b5305b928d Use More Specific Name for 'anyFailedChecks'
The function returns whether or not there were any failed checks at
the 'Standard' level.  Make the function name reflect this.
2024-10-16 09:32:19 +02:00
Bård Skaflestad
0c71d0701c Add MPI Support to Saturation Function Consistency Checks
This commit adds a new public member function

    SatfuncConsistencyChecks<>::collectFailures(root, comm)

which aggregates consistency check violations from all ranks in the
MPI communication object 'comm' onto rank 'root' of 'comm'.  This
amounts to summing the total number of violations from all ranks and
potentially resampling the failure points for reporting purposes.

To this end, extract the body of function processViolation() into a
general helper which performs reservoir sampling and records point
IDs and which uses a call-back function to populate the check values
associated to a single failed check.  Re-implement the original
function in terms of this helper by wrapping exportCheckValues() in
a lambda function.  Extract similar helpers for numPoints() and
anyFailedChecks(), and add a new helper function

    SatfuncConsistencyChecks<>::incorporateRankViolations()

which brings sampled points from an MPI rank into the 'root's
internal data structures.

One caveat applies here.  Our current approach to collecting check
failures implies that calling member function reportFailures() is
safe only on the 'root' process in a parallel run.  On the other
hand functions anyFailedChecks() and anyFailedCriticalChecks() are
safe, and guaranteed to return the same answer, on all MPI ranks.

On a final note, the internal helper functions are at present mostly
implemented in terms of non-owning pointers.  I intend to switch to
using 'std::span<>' once we enable C++20 mode.
2024-06-28 11:04:53 +02:00
Bård Skaflestad
c3939c5444 Add New Platform for Saturation Function Consistency Checks
The intention is that this will ultimately replace the existing
RelpermDiagnostics component which does not really work in parallel
and which does not report enough context to help diagnose underlying
issues.  For now, though, we just add the shell of a new set of
checks and hook that up to the build.

Class SatfuncConsistencyChecks<Scalar> manages a configurable set of
consistency checks, the implementations of which must publicly
derive from SatfuncConsistencyChecks<Scalar>::Check.  Client code
will configure a set of checks by first calling

    SatfuncConsistencyChecks<Scalar>::resetCheckSet()

then register individual checks by calling

    SatfuncConsistencyChecks<Scalar>::addCheck()

and finally build requisite internal structures by calling

    SatfuncConsistencyChecks<Scalar>::finaliseCheckSet()

Client code will then run the checks by calling

    SatfuncConsistencyChecks<Scalar>::checkEndpoints()

typically in a loop.  Class SatfuncConsistencyChecks<Scalar> will
count consistency check failures and attribute these to each
individual check as needed.  We also maintain separate counts for
"Standard" and "Critical" failures.  The former will typically
generate warnings while the latter will typically cause the
simulation run to stop.  Individual checks get to decide which check
is "Critical", and client code gets to decide how to respond to
"Critical" failures.

Member function SatfuncConsistencyChecks<Scalar>::reportFailures()
will generate a textual report of the known set of consistency check
failures at a give severity level.

As an internal implementation detail, SatfuncConsistencyChecks uses
"reservoir sampling"
(https://en.wikipedia.org/wiki/Reservoir_sampling) to track details
about individual failed checks.  We maintain at most a fixed number
of individual points (constructor argument).
2024-06-26 12:17:00 +02:00