Have removed the SimulatorState base class, and instead replaced with
the SimulationDatacontainer class from opm-common. The SimulatorState
objects were typcially created with a default constructor, and then
explicitly initialized with a SimulatorState::init() method. For the
SimulationDataContainer RAII is employed; the init( ) has been removed -
and there is no default constructor.
Upstream (opm-parser) now provides a better Equil + EquilRecord, and
simultaneously deprecated EquilWrapper. This patch fixes the resulting
breakage.
One important note: The new Equil does not expose integers for live
oil/wet gas initialization procedure methods, but rather booleans
through constRs/constRv methods. This is how the variable behaves
according to the Eclipse reference manual (EQUIL keyword section).
Code has been updated to reflect this.
1. Added method setCellDataComponent()
2. Removed setFirstSat()
Implemented saturation initialisation using setCellDataComponent()
instead of setFirstSat(). This way the template<class Props> has been
removed from the SimulatorState class.
opm-parser#677 changes the return types for the Deck family of classes.
This patch fixes all broken code from that patch set.
https://github.com/OPM/opm-parser/pull/677
Several files stopped compiling due to relying on opm-parser headers
doing includes. From opm-parser PR-656
https://github.com/OPM/opm-parser/pull/656 this assumption is no longer
valid.
This commit introduces a new public method, activeRegions(), that
retrieves those region IDs that contain at least one active cell.
We furthermore extend the cells() method to support lookup of
arbitrary region IDs. Non-active region IDs produce empty cell
ranges.
Intended use case is
for (const auto& reg : rmap.activeRegions()) {
const auto& c = rmap.cells(reg);
// use c
}
namely BlackoilStateToFluidState which takes a BlackoilState object
and exposes it as a opm-material like fluid state object. Similar for
ExplicitArraysFluidState, which takes raw arrays.
since fluid states are a local API, the index of the cell to be used
for these two classes must be set externally. The advantage of this
concept is that it is possible to make "saturation functions" which
not only depend on saturations but also on arbitrary other quanties
(like temperature or phase composition) without having to change the
API of the "saturation" functions.