@bska We're merging as-is for now, and we've made a note to replace `shared_ptr` and maintain (and document!) this property. Those changes will obviously be internal and you won't notice a difference.
opm/core/utility/thresholdPressures.hpp
tests/test_thresholdpressure.cpp
opm/core/simulator/SimulatorCompressibleTwophase.hpp
opm/core/simulator/SimulatorCompressibleTwophase.cpp
opm/core/simulator/SimulatorIncompTwophase.hpp
opm/core/simulator/SimulatorIncompTwophase.cpp
examples/sim_2p_comp_reorder.cpp
the files in opm/core has been put in opm/simulators
The Todd-Longstaff model is extended to incorporate pressure effects
The solvent viscosity is then caculated as
mu_eff = mu_s^(1-\alpha * \omega) * mu_mix^(\alpha * \omega)
where \omega accounts for the porous media effects and \alpha =
\alpha(pressure) accounts for the miscibility of the solvent and oil
when contacted.
The \alpha values can be given using the TLPMIXPA keyword
If no entries are given to TLPMIXPA the table specified using PMISC will
be used as default.
IF TLPMIXPA does not appear in the grid \alpha = 1 and the pressure
effect is neglected.
This is tested in test_solventprops_ad.cpp
Have removed the SimulatorState base class, and instead replaced with
the SimulationDatacontainer class from opm-common. The SimulatorState
objects were typcially created with a default constructor, and then
explicitly initialized with a SimulatorState::init() method. For the
SimulationDataContainer RAII is employed; the init( ) has been removed -
and there is no default constructor.
A power method where both f and g are ADB variables is added
using the general derivative rule
(f^g)' = f^g * ln(f) * g' + g * f^(g-1) * f'
Tests are added to test_block.cpp
the opm-material classes are the ones which are now used by
opm-autodiff and this patch makes it much easier to keep the opm-core
and opm-autodiff results consistent. Also, the opm-material classes
seem to be a bit faster than the opm-core ones (see
https://github.com/OPM/opm-autodiff/pull/576)
I ran the usual array of tests with `flow`: SPE1, SPE3, SPE9 and Norne
all produce the same results at the identical runtime (modulo noise)
and also "Model 2" seems to work.
Upstream (opm-parser) now provides a better Equil + EquilRecord, and
simultaneously deprecated EquilWrapper. This patch fixes the resulting
breakage.
One important note: The new Equil does not expose integers for live
oil/wet gas initialization procedure methods, but rather booleans
through constRs/constRv methods. This is how the variable behaves
according to the Eclipse reference manual (EQUIL keyword section).
Code has been updated to reflect this.
opm-parser#677 changes the return types for the Deck family of classes.
This patch fixes all broken code from that patch set.
https://github.com/OPM/opm-parser/pull/677
Several files stopped compiling due to relying on opm-parser headers
doing includes. From opm-parser PR-656
https://github.com/OPM/opm-parser/pull/656 this assumption is no longer
valid.
Several files stopped compiling due to relying on opm-parser headers
doing includes. From opm-parser PR-656
https://github.com/OPM/opm-parser/pull/656 this assumption is no longer
valid.
Several files stopped compiling due to relying on opm-parser headers doing
includes. From opm-parser PR-656 https://github.com/OPM/opm-parser/pull/656
this assumption is no longer valid.
Methods that returns the scaled critical gas (SGCR) saturation and the
scaled critical gas in oil saturation (SOGCR) is added to
BlackoilPropsAdFromDeck and BlackoilPropsAdInterface
A test is added in test_boprops_ad and fluid.data is modified to make
the test non trivial.
This silences warnings. It also makes it clear that
the cell thicknesses are not used in the current
algorithm, the doc comment has been updated to
reflect this.
This PR adds allow_cf to the wells structure that determine whether
crossflow is allowed or not. An extra argument is added to addWell(..)
to specify the allow_cf flag.
The surface density input in well_perforation_densities() in
WellDensitySegmented.hpp is changed from one value pr. phase to one
value pr phase and perforation. This allow for different densities in
different perforation. The test is changed accordingly.
This makes some tests succeed that use this deck only
for its properties and not its grid: if the grid in the
deck has fewer cells than the grid that is used for the
test we will fail in the SATNUM mapping.
This commit introduces a new public method, activeRegions(), that
retrieves those region IDs that contain at least one active cell.
We furthermore extend the cells() method to support lookup of
arbitrary region IDs. Non-active region IDs produce empty cell
ranges.
Intended use case is
for (const auto& reg : rmap.activeRegions()) {
const auto& c = rmap.cells(reg);
// use c
}
Compiles and tests successfully, but test coverage very
limited. New approach based on relatively primitive
run-time switching instead of trying to use inheritance.
the derivatives changed in some instances compared to the old
implementations. this patch updates them to the new versions.
thanks to [at]atgeirr for discovering this.
This makes some API changes to AutoDiffBlock.
- Add overload for the constant() constructor taking rvalue ref.
- Add overload for the variable() constructor taking rvalue ref.
- Make the function() constructor *require* rvalue refs.
- Add a swap() function.
The remaining changes in this commit are follow-ups especially
to the third change (adding std::move in many places), and
some removal of unnecessary block pattern arguments from calls to
the constant() static method.
In the parallel simulator we will have to be able adress only poperties on
some part of the global grid. To create thos properties we need to be able
to copy the grid independant data of the properties object and resize the rest.
This commit adds a construct taking a properties object for reading and a
new number of cells to accomplish this.
As there are no functors for computing the minimum and maximum,
we convert the std::max and std::min function pointers to
functors (which is not really nice.) Previously we were somehow
tricked into using std::greater and std::less, which of course do
return true or false and not what we need. Additionally, do more
excessive testing with different ranges.
We need to compute quite a few global reductions in the
Newton method of opm-autodiff. This commit adds the functionality
to compute several reductions combined using only one global
communication. Compiles and test succeeds with one or more process.
Previously, there were a completely different check for UnstructuredGrid
and CpGrid. The latter probably not working properly due to missing
support in the DUNE grid interface.
This commit resorts the code to use the UgGridHelpers abtraction instead of
UnstructuredGrid's legacy grid interface. Thus one code can be used to do
the checks for both grids. For UG the code compiles and the test is successful.
For CpGrid it compiles but of course the test still fails due to missing
transmissibility multiplier support. This will be sorted out in a different PR.
The constructor now needs and additional boolean to
flag whether to local permeabilities. The old one used
is not there anymore. Therefor this patch moves the code
to the new constructor interface.
Rename the the meaning for shut as whats used in Eclipse.
STOP: Well stopped off above the formation. I.e. allow for flow in the
well.
SHUT: Well completely isolated from the formation. The well is removed
from the well list.
1) Add the possibility for the user to chose between local and global
coordinate permeability in the transmissibility calculations.
2) Trow for CpGrid
3) Add default for switch
Note that this patch does not introduce any real temperature
dependence but only changes the APIs for the viscosity and for the
density related methods. Note that I also don't like the fact that
this requires so many changes to so many files, but with the current
design of the property classes I cannot see a way to avoid this...
- satfuncStandard: Unscaled curves, using standard version of the
Gwseg model.
- satfuncEPSBase: Unscaled curves, but using the EPS version of
the Gwseg model. There are some differences between this and the
standard version of Gwseg for derivatives at critical saturations.
The scheme for calculating the derivatives should be discussed.
(Will file a separate issue on this.)
- satfuncEPS_A: Scaled curves. Scaling parameters specified via
SWL family.
- satfuncEPS_B: Scaled curves. Scaling parameters identical to _A
but this time specified via the ENPTVD table. Test currently
suspended due problems with eclipse-state.
- satfuncEPS_C: Scaled curves. Scaling parameters identical to _A
but this time specified via Norne-like syntax (EQUALS, COPY etc.).
Shut wells are not added to the well list and thus not considered in the
simulator.
The shut well test in test_wellsmanager is modified to assert this
behaviour.
BUG: This change provokes an assert in the EclipeWriter as number of
wells in wellstate is different from number of wells in the schedule.
this is necessary because tables now must be queried using
EclipseState instead of directly. This implies that EclipseState can
be instantiated in the first place...
TODO (?): allow EclipseState instatiation for decks without a grid.
This commit adds a simple facility for converting component rates at
surface conditions to voidage rates at reservoir conditions. It is
intentionally limited in scope and meant to be employed only in the
context of class FullyImplicitBlackoilSolver<> or something very
similar. In particular, class SurfaceToReservoirVoidage<> assumes
that it will be used to compute conversion coefficients for
component rates to voidage rates, and that those coefficients will
typically be entered into the coefficient matrix of a linearised
residual.
Add a trivial test just to demonstrate the setup and calling
process. This is not a feature or correctness test.
for the legacy C-style grid the unit test is more or less complete (it
does not test FAULTMULT and NNC, etc, but these could be added with
sufficient determination), for Dune::CpGrid it currently does not
really check anything because I have not found a good way for CpGrid
to produce the "global" intersection index of an intersection...
New function well_controls_clone(), implemented in terms of the
public API only, mirrors the objective of function clone_wells(),
only for well control sets. Add a basic test to demonstrate the
function too.
this basically means using Opm::EclipseState instead of the raw deck
for these keywords.
with this, property modifiers like ADD, MULT, COPY and friends are
supported for at least the PERM* keywords. If additional keywords are
required these can be added relatively easily as well.
no ctest regressions have been observed with this patch on my machine.
i.e. reading the grid properties from EclipseState instead of from the
raw deck. This requires that all deck files exhibit a GRID and a
SCHEDULE section or else EclipseState will throw in the constructor.
To support this the solveSystem methods of the LinearSolverInterface gets
an optional additional template parameter of type boost::any. It can hold any
copy constructable object. In our case it is used to pass the information about
the parallelization into the solvers of dune-istl without the compiler needing to know
their type. Inside of LinearSolverIstl::solveSystem we check whether the type stored inside of
boost::any is the new ParallelIstlInformation. If this is the case we extract the information
and use the parallel solvers if available, otherwise we solve serial/sequential.
The new ParallelIstlInformation is needed as the OwnerOverlapCopyCommunication is not copy
constructable. This is indeed a design flaw that should and will fixed upstream, but for the
time being we need ParallelIstlInformation to transfer the ParallelIndexSet and RemoteIndices
objects.
Conflicts:
opm/autodiff/FullyImplicitBlackoilSolver.cpp
To resolve conflicts, WellState was changed to WellStateFullyImplicitBlackoil
in multiple places, and perfRate() changed to perfPhaseRate() in
WellDensitySegmented.
This test sets up a simple laplace problem and solves it with the available
solvers. It assume that either dune-istl or UMFPack is present, which is
assume to be safe.
In summary:
- added RsFunction (base class),
- made NoMixing, RsVD, RsSatAtContact inherit RsFunction,
- RS and RV are no longer template arguments for EquilReg class,
- EquilReg constructor now takes two shared_ptr<Miscibility::RsFunction>,
- use of constructor updated, mostly using make_shared.