Commit 96cf137 introduced support for Peaceman index calculation
that honoured general completion directions (X,Y,Z). This was
accomplished through a permutation index that reordered the
permeability and geometric extent components according to a local
coordinate system along the completion.
In a complete breakdown of logic, however, the d-component extent
vector was indexed as though it were a d-by-d matrix. This commit
restores sanity to the processing.
Pointy hat: @bska.
This commit extends the feature set of the WellsManager to support
horizontal ("X" and "Y") completions and include the net-to-gross
ratio in the Peaceman index ("Completion Transmissibility Factor,
CTF") of a well completion. The NTG factor is included if present
in the input deck represented by the "eclipseState".
There are two separate, though related, parts to this commit. The
first part splits the calculation of Peaceman's "effective radius"
out to a separate utility function, effectiveRadius(), and
generalises WellsManagerDetail::computeWellIndex() to account for
arbitrary directions and NTG factors. The second part uses
GridPropertyAccess::Compressed<> to extract the NTG vector from the
input if present while providing a fall-back value of 1.0 if no such
vector is available.
Note: We may wish to make the extraction policy configurable at some
point in the future.
This commit tightens the function header of method
WellsManager::createWellsFromSpecs()
to accept a reference-to-const 'cartesian_to_compressed' map. It
used to be a complete, copy-constructed object, so this is a slight
performance enhancement as we no longer need to copy a (somewhat)
large object on every call to the method.
This commit generalises the implementation of utility function
'getCubeDim' to support arbitrary number of space dimensions. In
actual practice there's no change in features as we only really use
a compile-time constant (= 3) to specify the number of space
dimensions.
This is a demonstration of using the
GridPropertyAccess::Compressed<>
class template. We save (some) memory by not creating the zero
fall-back vector in assignPermeability(), preferring instead to use
the fall-back/default mechanism of ArrayPolicy::ExtractFromDeck<>.
While here, adjust vector<PermComponent>::reserve() capacity to
reflect actual requirements.
Clients expect column-major (Fortran) ordering of the contiguous
"permeability_" array so that's what we create despite "tensor"
being row-major.
Suggested by: [at] atgeirr
This commit switches the assignment
diagonal = max(diagonal, minval)
to using a reference in the "diagonal" expression. This guarantees
that the indexing is done once which eases maintainability. While
here, replace the hard-coded dimension stride ('3') with the current
run-time dimension. This is mostly for symmetry because the overall
code is only really supported in three space dimension.
Calling code relies on permeability tensors being stored in column
major order (row index cycling the most rapidly). Honour that
requirement. The previous assignment implied row major ordering
(column index cycling the most rapidly). This, however, is a
pedantic rather than visible change because the surrounding code
enforces symmetric tensors whence both orderings produce the same
results when the array is viewed contiguously.
For constant capillar pressure function the saturation is
determined by cell depths:
Sg_max, Sw_min
----- goc ----
Sg_min, Sw_min
----- woc ----
Sg_min, Sw_max
This commit removes several instances of EOL whitespace in function
'swatInitScaling()'. Aesthetic only. No functional changes.
Suggested by: [at] atgeirr
The constant 1.0e-8 was used as a threshold to distinguish "low"
from "high" capillary pressure values. Introduce acutual constant
"pc_low_threshold" to clarify that role.
Suggested by: [at] atgeirr
This commit renames the 'np' parameter used to allocate small arrays
for saturations and capillary pressures to 'max_np' to better
reflect its purpose.
Suggested by: [at] atgeirr
New function well_controls_clone(), implemented in terms of the
public API only, mirrors the objective of function clone_wells(),
only for well control sets. Add a basic test to demonstrate the
function too.
The 'cpty' field is for internal memory management purposes only.
No client can know of its existence, let alone inspect or directly
change the value, so it should not be used to adjudicate control set
equality. This was useful during the refactoring work to introduce
the opm-parser support, but its utility has since ceased.
Okay'ed by: [at] atgeirr and [at] joakim-hove
Current version executes reordered solve once for each tracer. The benefit
is a simpler code and the ability to use MDU with tracers. The cost is
potentially higher runtime, compared to doing a single sweep for all
tracers (and tof).
When this boolean parameter is true (the default), tracer solutions
will be normalized so that the tracer averages will sum to one in each cell.
This behaviour is the same as before, the change is that it can now be
turned off.
this basically means using Opm::EclipseState instead of the raw deck
for these keywords.
with this, property modifiers like ADD, MULT, COPY and friends are
supported for at least the PERM* keywords. If additional keywords are
required these can be added relatively easily as well.
no ctest regressions have been observed with this patch on my machine.
The queried keywords are unknown to the parser and after manual
inspection also to the Eclipse RM. There might be wrong keywords some
left, but these were to ones needed to get SPE9 started using
sim_fibo_ad...
the largest change is that all classes below opm/core/props/pvt take
the PVT region index as an argument, the higher-level ones (i.e.,
BlackoilProps*) take cell indices.
Previous fix was wrong because it called getKeyword() outside the
hasKeyword() check. Current version (like original code) uses the
short-circuiting behaviour of && to ensure this.
This was missing in commit 4c2120c and produced some build failures
that were hard to analyse. I'm not convinced that the underlying
problem is solved, but this does at least restore the build.
The class OwnerOverlapCopyCommunication is not defined unless MPI is
avilable. Therefore, we cannot reference the type unless we know
that MPI is available in the current translation unit.
Removed conflicts in
opm/core/wells/WellsManager.cpp
that were due to the change
```diff
- pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm, completion->getDiameter());
+ pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm, completion->getSkinFactor());
```
in WellsManager::createWellsFromSpecs which moved from WellsManager.cpp to WellsManager_impl.hpp file in a previous commit.
As @bska pointed in my issue #518 this definition was
accidentally removed in commit 20468d1 during a merge of
upstream changes. Therefore I readd it with this patch.
- Saturations, phase pressures, and standard initialsation of RS and RV
now agree to baseline.
- Tables of RS and RV versus vertical depth (kw RSVD RVVD) have been
hardcoded for testing (need new parser) and the calculations agree to
baseline in the gas and oil zones. In the water zone there is some
differences: Our code computes saturated RS and RV using the final
phase pressures (these are modified to be consistent with saturations
and capillary pressures) while the baseline uses unmodified phase pressures.
To support this the solveSystem methods of the LinearSolverInterface gets
an optional additional template parameter of type boost::any. It can hold any
copy constructable object. In our case it is used to pass the information about
the parallelization into the solvers of dune-istl without the compiler needing to know
their type. Inside of LinearSolverIstl::solveSystem we check whether the type stored inside of
boost::any is the new ParallelIstlInformation. If this is the case we extract the information
and use the parallel solvers if available, otherwise we solve serial/sequential.
The new ParallelIstlInformation is needed as the OwnerOverlapCopyCommunication is not copy
constructable. This is indeed a design flaw that should and will fixed upstream, but for the
time being we need ParallelIstlInformation to transfer the ParallelIndexSet and RemoteIndices
objects.
This patch refactors the calls to the dune-istl solvers.
The SeqScalarProduct, and SequentialInformation is now explicitly
constructed and later used to construct the smoothers
generically. Aditionally the linear operator (MatrixAdapter) is
constructed before calling the various solver dependent solve
routines.
While this does not change the behaviour of the code it is a
preparatory step to support parallel solvers. These parallel
solvers only differ in the type of the scalarproduct and
linear operator used from the sequential ones.
This patch refactors the calls to the dune-istl solvers.
The SeqScalarProduct, and SequentialInformation is now explicitly
constructed and later used to construct the smoothers
generically. Aditionally the linear operator (MatrixAdapter) is
constructed before calling the various solver dependent solve
routines.
While this does not change the behaviour of the code it is a
preparatory step to support parallel solvers. These parallel
solvers only differ in the type of the scalarproduct and
linear operator used from the sequential ones.
This fixes further occurences of DUNE_HAS_FASTAMG that were
missed in pull request #530.
Previously we relied on the define DUNE_HAS_FAST_AMG to detect
whether these preconditioners are available. This define is only
available in the 2.2 release with cmake support. Therfore we now
addtionally test whether we are using dune-istl 2.3 or newer.
and throw an exception if "simple" is encountered...
According to Ove, gwseg should be used, because "gwseg is the model
relevant to the norne case - i.e the model eclipse uses.
The fix for the simple model has to wait for a refac of the satfunc
complex."
Previously we relied on the define DUNE_HAS_FAST_AMG to detect
whether these preconditioners are available. This define is only
available in the 2.2 release with cmake support. Therfore we now
addtionally test whether we are using dune-isl 2.3 or newer.
Patch 31c09aed was erroneous as it was trying to assing a
SaturationPropsFromDeck<SatFuncSimpleNonuniform> to a
SaturationPropsFromDeck<SatFuncSimpleUniform> in the constructor
taking the new parser. This patch fixes this.
My last merge broke compilation of opm-autodiff, as this new function
still relied on the old behaviour (the one taking a grid instead of
the data directly). This patch moved initStateFromDeck to the new behaviour.
The mentioned commit was applied before the merge of
opm-parser-integrate and therefore the changes did not carry over
to the code that uses the new parser. This code mimics the
changed behaviour for the new parser.
Closes issue #516
Instead of making well rates zero for wells that are not controlled by
surface volume, we initialize them to a small value with the correct
sign (positive for injectors, negative for producers).
It is not quite complete yet for the following reasons:
- it does not compute state.surfacevol(),
- the InitialStateComputer class does not compute Rs or Rv,
- it has not been verified.
In summary:
- added RsFunction (base class),
- made NoMixing, RsVD, RsSatAtContact inherit RsFunction,
- RS and RV are no longer template arguments for EquilReg class,
- EquilReg constructor now takes two shared_ptr<Miscibility::RsFunction>,
- use of constructor updated, mostly using make_shared.
This includes relative permeability and capillary pressure functions.
The default has been to make a monotone spline from the given table
values and use a fine, uniform sampling of that. Now the default
is to use the tables as-is. It is still possible to use the spline
approach. For example in the class BlackoilPropertiesFromDeck one
may pass nonzero values for the 'pvt_tab_size' and 'sat_tab_size'
parameters, corresponding to how fine the spline will be sampled.
This patch refactors (hopefully) all parts of opm-core that are needed
by the fully implicite black oil solver in opm-autodiff and that inherently
relied on UnstructuredGrid.
We added a new simple grid interface consisting out of free functions
that will allow us to use CpGrid without copying it to an UnstructuredGrid
by the means of the GridAdapter. Using this interface we have add methods that
allow specifying the grid information (global_cell, cartdims, etc.) wherever
possible to prevent introducing grid parameters for the type of the grid.
Unfortunately this was not possible everywhere.
This commit implements some additional scaling keywords. This includes
the ISWL-family that provide hysteresis behaviour via alternative
scaling of the tables. The old parser has been somewhat extended for
testing purposes. The commit also includes a slight refactoring of the
SatFunc-family where a new base class has been introduced.
The initial implementation of RK4IVP<>::operator() failed to take
into account the possibility that we might need to evaluate the
function outside the vertical span for which it was initially
defined. This situation occurs, for instance, in the not uncommon
cases of the GOC being above or the WOC being below the model.
This commit installs a crude Hermitian extrapolation procedure to
handle these cases. Refinements are likely.
This commit adds support for assigning the initial phase pressure
distribution to a subset of the total grid cells. This is needed in
order to fully support equilibration regions. The existing region
support (template parameter 'Region' in function 'phasePressures()')
was only used/needed to define PVT property (specifically, the fluid
phase density) calculator pertaining to a particular equilibration
region.
This commit adds a simple facility for calculating initial phase
pressures assuming stationary conditions, a known reference pressure
in the oil zone as well as the depth and capillary pressures at the
water-oil and gas-oil contacts.
Function 'Opm::equil::phasePressures()' uses a simple ODE/IVP-based
approach, solved using the traditional RK4 method with constant step
sizes, to derive the required pressure values. Specifically, we
solve the ODE
dp/dz = rho(z,p) * g
with 'z' represening depth, 'p' being a phase pressure and 'rho' the
associate phase density. Finally, 'g' is the acceleration of
gravity. We assume that we can calculate phase densities, e.g.,
from table look-up. This assumption holds in the case of an ECLIPSE
input deck.
Using RK4 with constant step sizes is a limitation of this
implementation. This, basically, assumes that the phase densities
varies only smoothly with depth and pressure (at reservoir
conditions).
The pvt interface is extended to handle wet-gas systems:
1. rvSat is added as a function in the PVT interface
2. SinglePvtLiveGas computes the pvt values and its derivatives
3. The old rbub variable is changed to rsSat for clearity
4. The new interface is tested in test_blackoilfluid with data from
liveoil.DATA and wetgas.DATA
This is intentionally black-oil specific because we presently do no
know how to handle other cases (e.g., more phases or number of phases
different from number of components).
The second input of initBlackoilStateFromDeck that computes surface
volumes based on gas/oil ratio is changed from
BlackoilPropertiesInterface to Props. To avoid duplication with the old
initBlackoilStateFromDeck its name is changed to
initBlackoilSurfvolUsingRS.
Add new function is added that computes saturation from surface volumes
solving z = As for each cell. This function is used to compute an
intial guess to the saturations in initState_impl.hpp.
The 'comp_term' is supposed to be a total divergence term, which is supposed
to be zero for incompressible flow. It was added for improved robustness in
stagnant areas, but as implemented it would not be computed properly for
oil injection scenarios, due to the convention for two-phase transport
source terms (positive terms are inflow of first phase [water], negative
terms are total outflow).
The WellsManager class handles INJECTORS by assigning a phase
distribution (W->ctrls[i]->distr) that coincides with the injected
fluid for the corresponding well (e.g., {1,0,0} for WATER injectors in
a three-phase WATER/OIL/GAS simulation). This, however, meshes poorly
with the restriction that all phase components must be ONE in the case
of wells constrained by total reservoir volume flow targets (RESV)
that was introduced in commit b7d1634.
This change-set limits the restriction on phase distributions to
PRODUCERs only and is a tentative solution to GitHub PR #360.
Otherwise the compiler will probably give us a warning that these
pragmas are unknown. By default that warning is disabled with our
own build system, but we also want to be able to link to our library
without incorporating the entire build system too.
To avoid deprecation warnings the number of smoothing steps was passed
through the Criterion instead of directly to the constructor in commit
a7f32b934b.
However, due to an insufficient test matrix this was not tested using
the fast AMG variant of DUNE so it breaks the builds if
`-DHAS_DUNE_FAST_AMG` is defined.
This change should apply the same type of change to this branch as for
the others. The number of smoothing steps is put into a constant to
avoid the magic number 1 to appear in too many places (although I am
not sure the number for pre- and post-smoothing always should be the
same).
If a function is used by a template but this template is not
instantiated, the function will still be defined in the header
of a module but it won't be callable because it is in an anonymous
namespace and thus we get a warning.
This only happens in Clang; GCC consider functions referenced from
templates as used.
fixup! Don't warn about functions not emitted
make all non-implementation headers includable without
preconditions. Also, this removes the GravityColumnSolver.hpp file,
because it tried to include a non-existing file and it was thus unused.
for some of these files this is needed to make to keep it compiling
after the next patch because the new ErrorMacros.hpp file will no
longer implicitly includes <iostream>. for the remaining files it is
just good style.
While at it, the includes for most of these files have been ordered in
order of decreasing abstraction level.
SuiteSparse may or may not be installed in a suitesparse/ directory.
FindSuiteSparse will look in a suitesparse/ subdirectory when trying
to locate umfpack.h, but it will add the full directory to the compiler
command-line (e.g. `-I/usr/include/suitesparse`) and not that of the
parent. Since the parent is usually included too, it is not noticed
that it is advertedly using another include paths than its own.
However, if we have SuiteSparse installed in a non-system location,
using the subdirectory in the `#include` statement may now cause an
error, even though configuration actually found SuiteSparse!
AGMG is now under a closed-source license, meaning that results
obtained with this solver is not freely reproducible by others.
Its use is therefore discouraged.
As of version 2.3, the DUNE AMG parts are competitive, so there
is a free and open alternative.
our policy is that we only use boost if necessary, i.e., if the oldest
supported compiler does not support a given feature but boost
does. since we recently switched to GCC 4.4 or newer, std::shared_ptr
is available unconditionally.
most of them quite insignificant, but still annoying. The only
exception is the warning about the changed alignment for the 'work'
argument of spu_implicit_assemble(). AFAICT, the only reason why it
worked was that the pointer produced by malloc() was passed
directly. (malloc() seems to fulfill all alignment criteria.) To fix
this, I've changed that argument's type from char* to double*.
The current implementations of IncompPropertiesInterface are very
all-or-nothing. In some situations, you want to read rock and fluid
properties from an Eclipse file, but use analytical functions for
the unsaturated properties. Or you want to update properties based
on a marching filter.
This patch provides a way to mix various property objects, or to
"shadow" the properties with a raw array of data, so you don't have
to reimplement the entire interface just to make a small change.
The <have_boost_redef.hpp> header was introduced (commit 82369f9) as
a work-around for a particular interaction in the Autotools-based
setup of OPM-Core and the Dune core modules. Notably, Dune's
"Enable" trick for Boost failed on some older Autoconf systems. Now
that we're using CMake, however, that kluge is no longer needed
because we (OPM-Core) always
#define HAVE_BOOST 1
i.e., as an explict true/false value.
Therefore, we need no longer include <have_boost_redef.hpp> . The
header will be removed at a later time.
After this patch one can set the prolongation factor for all
AMG calls and the number of smoothing steps for all except
of FastAMG that currently only supports on step.
Do not use the well's comp_frac member, only rely on the control's distr
member for initialization. This forced a change to WellsManager's
initialization of the distr member.