When testing a gaslift well under THP control, if the
well does not converge with maximum alq, try to reduce alq
in increments until well equations converge.
1. stopped production wells
2. production wells under zero rate control
We guarantee the objective through enforce zero values for the WQTotal
primary variable during the initialization and update process during the
Newton solution.
hopefully, it begins at a reasonably good initial point. When the Newton
iteration begins with certian solution region, the nonlinear solution
might fail.
this adds the well matrices to a WellContributions object.
this is the core of StandardWellEval::addWellContributions.
use the new method in the implementation.
Assign a maximum ALQ value to each GLIFT producer when doing well testing
in beginTimeStep(). This allows the well to be considered open. Then,
later in the timestep, when assemble() is called, the full gas lift
optimization procedure can adjust the ALQ to its correct value.
It is also observed that in some cases when gas lift is switched off by
setting ALQ to zero, and later in the schedule is switched back on again,
it might not be possible to determine bhp from thp for low small ALQ values.
Instead of aborting the gas lift optimization, we should try increasing
ALQ until we get convergence or until the maximum ALQ for the well is
reached.
Introduces a gaslift debugging variable in ALQState in WellState. This
variable will persist between timesteps in contrast to when debugging
variables are defined in GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2.
Currently only an integer variable debug_counter is added to ALQState,
which can be used as follows: First debugging is switched on globally
for BlackOilWellModel, GasLiftSingleWell, GasLiftGroupState, and
GasLiftStage2 by setting glift_debug to a true value in BlackOilWellModelGeneric.
Then, the following debugging code can be added to e.g. one of
GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2 :
auto count = debugUpdateGlobalCounter_();
if (count == some_integer) {
displayDebugMessage_("stop here");
}
Here, the integer "some_integer" is determined typically by looking at
the debugging output of a previous run. This can be done since the
call to debugUpdateGlobalCounter_() will print out the current value
of the counter and then increment the counter by one. And it will be
easy to recognize these values in the debug ouput. If you find a place
in the output that looks suspect, just take a note of the counter
value in the output around that point and insert the value for
"some_integer", then after recompiling the code with the desired value
for "some_integer", it is now easy to set a breakpoint in GDB at the
line
displayDebugMessage_("stop here").
shown in the above snippet. This should improve the ability to quickly
to set a breakpoint in GDB around at a given time and point in the simulation.
The cell pressure is independent of well model and belongs to the interface
This should move the MSW model one step closer to supporting GasWater cases
Check group limits in gas lift stage 1 to avoid adding too much ALQ which must
anyway later be removed in stage 2. This should make the optimization
more efficient for small ALQ increment values. Also adds MPI support.
This replace the Boolean switch to enable inner iterations with a
int that controls for which maximum number of newton iterations
inner iterations applies.
Default is set to 3
Extends PR #2824 to include support for GLIFTOPT (item 2, maximum lift
gas supply for a group) and group production constraints.
The optimization is split into two phases. First the wells are optimized
separately (as in PR #2824). In this phase LIFTOPT and WLIFTOPT constraints
(e.g. maxmimum lift gas injection for a well, minimum economic gradient) are
considered together with well production constraints.
Then, in the next phase the wells are optimized in groups. Here, the ALQ
distribution from the first phase is used as a starting point. If a group
has any production rate constraints, and/or a limit on its total rate of
lift gas supply, lift gas is redistributed to the wells that gain the most
benefit from it by considering which wells that currently has the largest
weighted incremental gradient (i.e. increase in oil rate compared to
increase in ALQ).
The B matrix is basically a component-wise multiplication
with a vector followed by a parallel reduction. We do that
reduction to all ranks computing for the well to save the
broadcast when applying C^T.