this has several advanges:
- a consistent and complete help message is now printed by passing the
-h or --help command line parameters. most notably this allows to
generically implement tab completion of parameters for bash
- the full list of runtime parameters can now be printed before the simulator
has been run.
- all runtime parameters understood by ebos can be specified
- no hacks to marry the two parameter systems anymore
- command parameters now follow the standard unix convention, i.e.,
`--param-name=value` instead of `param_name=value`
on the negative side, some parameters have been renamed and the syntax
has changed so calls to `flow` that specify parameters must adapted.
these objects are only used by flow_legacy, so not having to deal with
them anymore lets non-legacy flow avoid to jump through a lot of hoops
for the sake of having a common API.
this required a fork of the NonlinearSolver and AdaptiveTimeStepping
classes. this is not a problem because the original classes would get
pruned to look like the new ones once flow_legacy gets moved out of
the opm-simulators module.
this is needed to avoid linker errors if this class ought to be used
in multiple compile units. IMO the main problem here is the use of an
_impl.hpp file.
the performance summary at the end of a Norne run which are printed by
`flow_ebos` now looks like this on my machine:
```
Total time (seconds): 773.757
Solver time (seconds): 753.349
Assembly time (seconds): 377.218 (Failed: 23.537; 6.23965%)
Linear solve time (seconds): 352.022 (Failed: 23.2757; 6.61201%)
Update time (seconds): 16.3658 (Failed: 1.13149; 6.91375%)
Output write time (seconds): 22.5991
Overall Well Iterations: 870 (Failed: 35; 4.02299%)
Overall Linearizations: 2098 (Failed: 136; 6.48236%)
Overall Newton Iterations: 1756 (Failed: 136; 7.74487%)
Overall Linear Iterations: 26572 (Failed: 1786; 6.72136%)
```
for the flow_legacy family, nothing changes.
Previously the substep summary reports were cumulative, misleading the user.
Also, made output a little more compact and readable, ensuring numbers line up
unless unusually many digits are needed for times and iteration counts.
needed as substep summary reports requires FIP data to be available.
add calculation of this data if output is requested and summary
config holds relevant keywords.
since the unit code within opm-parser is now a drop-in replacement,
this simplifies things and make them less error-prone.
unfortunately, this requires quite a few PRs. (most are pretty
trivial, though.)
Previously, we also called it when the full time step was done.
As the simulator writes that information anyway and we cannot call
it a sub step, we omit the final write in the adaptive time stepper.
-- avoid using eof()
-- add comments
-- no longer assumes two lines of comments.
-- revert change to default value for timestep.initial_step_length
-- make contructer explicit
-- pass reference
A new timestepper that reads timesteps from a file generated using
ecl_summary "DECK" TIME
and applies it to the simulator
Also a parameter timestep.initial_step_length (default 1 day) is added
to controll the frist timestep.
Have removed the SimulatorState base class, and instead replaced with
the SimulationDatacontainer class from opm-common. The SimulatorState
objects were typcially created with a default constructor, and then
explicitly initialized with a SimulatorState::init() method. For the
SimulationDataContainer RAII is employed; the init( ) has been removed -
and there is no default constructor.
- use time stepping algorithm pid instead of pid + iter
Adjusting the time-steps on the number of linear iterations does
currently not give any improvents on the time-stepping.
- Change the pid tolerance. The time-stepper will take longer time-steps
and thus reduce the simulation time significantly. The Norne and the SPE
results does not degrade
- Less aggressive reduction of time-steps after convergence problems
Previously there was an assertion whether the time stepping is still
running when querying the time step. After commit 5af794cfd588b this
triggered an assertion for Norne. As there is no reason to limit querying
the current time step in this way. This commit simply removes the assertion
in AdaptiveSimulatorTimer::currentStepLength.
This closesOPM/opm-autodiff#446
In a constructor initialisation list, the order should be the same
as the order in which the variables actually are initialised, which
is given by the order they are declared in the class and not by the
order in the initialisation list.
The only stage where parallelism changes the adaptive time
stepping is when some inner products on the saturation and
pressure are computed.
This commit makes this part parallel by added an additonal boost::any
parameter to the time stepping and the controller. Per default this
is empty. In a parallel run it contains a ParallelIstlInformation object
encapsulating the information about the parallelisation. This then used
to compute the parallel inner product.
-max time step parameter
PIDTimeStepControl --> TimeStepControl:
- added simple iteration count time step control
- bug fix in PIDAndIterationCountTimeStepControl
AdaptiveTimeStepping: apply the above changes.
because the name "currentTime()" can be mistaken for the point in
real-life time at which the simulation is run (e.g. March 11, 2014,
15:07:45.123), the _point_ in time which the simulator timer currently
represents (e.g. Jun 5, 1985, 02:33:12.345) instead of the simulator
time in seconds which elapsed since the START date
(e.g. 52633.345 s).
this rename may lead to some fallout in other modules. I'll
fix them after this PR has been merged...
Since SimulatorTimer is a fairly shallow shim if using the TimeMap, it
can also be removed relatively easily. Having said this, that would
trigger _many_ changes in _a lot_ of places and I'm not motivated at
all to fight that battle as long as the old parser needs to be
supported. I thus decided that the best way is to add a "wrapper mode"
to SimulationTimer...
The step number is zero before the first timestep has been taken, and
one after. The step number is one before the second timestep has been
taken, and two after. This was not clear from the text.