- Use std::vector<HydroCarbonState> instead of std::vector<int>
- Use the initializer list to initialize members in constructors
- Fix indent
- Return OilOnly for cases without gas to avoid potential trouble
further down the line
The following hydroCarbonState are used
enum HydroCarbonState {
GasOnly = 0,
GasAndOil = 1,
OilOnly = 2
};
Cells almost filled with water are treated as a GasAndOil state
The hydroCarbonState is used to store the hydroCarbonState
State 1: Gas only
State 2: Gas and Oil
State 3: Oil only
An empty vector is return at initialization as
no default values are provided by the blackoilstate.
@bska We're merging as-is for now, and we've made a note to replace `shared_ptr` and maintain (and document!) this property. Those changes will obviously be internal and you won't notice a difference.
- Handle shut wells
- Use the groups control type to determine which phase to calculate
the guide rates from. i.e for a ORAT controlled group, calculate the
guide rates from the oil phase well potentials etc.
The default guide rates are caculated using the well potentials.
The well potentials are calculated in the simulator and given as input
to the wellsManager.
Have removed the SimulatorState base class, and instead replaced with
the SimulationDatacontainer class from opm-common. The SimulatorState
objects were typcially created with a default constructor, and then
explicitly initialized with a SimulatorState::init() method. For the
SimulationDataContainer RAII is employed; the init( ) has been removed -
and there is no default constructor.
the dissolution factors used for the viscosities were always zero so
far. this was not discovered earlier because flow is completely
unaffected by this since the only place where this class is used in
flow is the equilibration code and the equilibration code does not
need phase viscosities.
thanks to @atgeirr for finding this.
the opm-material classes are the ones which are now used by
opm-autodiff and this patch makes it much easier to keep the opm-core
and opm-autodiff results consistent. Also, the opm-material classes
seem to be a bit faster than the opm-core ones (see
https://github.com/OPM/opm-autodiff/pull/576)
I ran the usual array of tests with `flow`: SPE1, SPE3, SPE9 and Norne
all produce the same results at the identical runtime (modulo noise)
and also "Model 2" seems to work.