There was a check that is supposed that all rates are zero but for
distributed wells it only checked local perforations. Of course that
can lead to different outcome on processes for distributed wells.
If we compute a sum over all perforations than we need to cater for the
case of distributed wells. That is we need to also sum up over all processes
involved after performing the local sum.
One of these global sums was missing in computeWellConnectionDensitesPressures
for producers when we compute the weights based on well transmissibilities.
Introduces a gaslift debugging variable in ALQState in WellState. This
variable will persist between timesteps in contrast to when debugging
variables are defined in GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2.
Currently only an integer variable debug_counter is added to ALQState,
which can be used as follows: First debugging is switched on globally
for BlackOilWellModel, GasLiftSingleWell, GasLiftGroupState, and
GasLiftStage2 by setting glift_debug to a true value in BlackOilWellModelGeneric.
Then, the following debugging code can be added to e.g. one of
GasLiftSingleWell, GasLiftGroupState, or GasLiftStage2 :
auto count = debugUpdateGlobalCounter_();
if (count == some_integer) {
displayDebugMessage_("stop here");
}
Here, the integer "some_integer" is determined typically by looking at
the debugging output of a previous run. This can be done since the
call to debugUpdateGlobalCounter_() will print out the current value
of the counter and then increment the counter by one. And it will be
easy to recognize these values in the debug ouput. If you find a place
in the output that looks suspect, just take a note of the counter
value in the output around that point and insert the value for
"some_integer", then after recompiling the code with the desired value
for "some_integer", it is now easy to set a breakpoint in GDB at the
line
displayDebugMessage_("stop here").
shown in the above snippet. This should improve the ability to quickly
to set a breakpoint in GDB around at a given time and point in the simulation.
This is needed to get consistent estimates for the summary vectors
* {F,G,W}OP{R,T}{F,S} -- Free/Vaporized Oil Production
* {F,G,W}GP{R,T}{F,S} -- Free/Dissolved Gas Production
in the case of distributed wells.
Thanks to [at]blattms for the suggested fix.
The cell pressure is independent of well model and belongs to the interface
This should move the MSW model one step closer to supporting GasWater cases