mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-06 14:33:02 -06:00
683 lines
26 KiB
C++
683 lines
26 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/props/pvt/SinglePvtInterface.hpp>
|
|
#include <opm/core/props/pvt/SinglePvtConstCompr.hpp>
|
|
#include <opm/core/props/pvt/SinglePvtDead.hpp>
|
|
#include <opm/core/props/pvt/SinglePvtDeadSpline.hpp>
|
|
#include <opm/core/props/pvt/SinglePvtLiveOil.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
// Making these typedef to make the code more readable.
|
|
typedef BlackoilPropsAdFromDeck::ADB ADB;
|
|
typedef BlackoilPropsAdFromDeck::V V;
|
|
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
|
|
enum { Aqua = BlackoilPhases::Aqua,
|
|
Liquid = BlackoilPhases::Liquid,
|
|
Vapour = BlackoilPhases::Vapour };
|
|
|
|
/// Constructor wrapping an opm-core black oil interface.
|
|
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const EclipseGridParser& deck,
|
|
const UnstructuredGrid& grid,
|
|
const bool init_rock)
|
|
{
|
|
if (init_rock){
|
|
rock_.init(deck, grid);
|
|
}
|
|
const int samples = 0;
|
|
const int region_number = 0;
|
|
|
|
phase_usage_ = phaseUsageFromDeck(deck);
|
|
|
|
// Surface densities. Accounting for different orders in eclipse and our code.
|
|
if (deck.hasField("DENSITY")) {
|
|
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
|
|
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
|
|
if (phase_usage_.phase_used[Aqua]) {
|
|
densities_[phase_usage_.phase_pos[Aqua]] = d[ECL_water];
|
|
}
|
|
if (phase_usage_.phase_used[Vapour]) {
|
|
densities_[phase_usage_.phase_pos[Vapour]] = d[ECL_gas];
|
|
}
|
|
if (phase_usage_.phase_used[Liquid]) {
|
|
densities_[phase_usage_.phase_pos[Liquid]] = d[ECL_oil];
|
|
}
|
|
} else {
|
|
THROW("Input is missing DENSITY\n");
|
|
}
|
|
|
|
// Set the properties.
|
|
props_.resize(phase_usage_.num_phases);
|
|
// Water PVT
|
|
if (phase_usage_.phase_used[Aqua]) {
|
|
if (deck.hasField("PVTW")) {
|
|
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_));
|
|
} else {
|
|
// Eclipse 100 default.
|
|
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise));
|
|
}
|
|
}
|
|
// Oil PVT
|
|
if (phase_usage_.phase_used[Liquid]) {
|
|
if (deck.hasField("PVDO")) {
|
|
if (samples > 0) {
|
|
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
|
|
} else {
|
|
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
|
|
}
|
|
} else if (deck.hasField("PVTO")) {
|
|
|
|
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
|
|
} else if (deck.hasField("PVCDO")) {
|
|
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_));
|
|
} else {
|
|
THROW("Input is missing PVDO or PVTO\n");
|
|
}
|
|
}
|
|
// Gas PVT
|
|
if (phase_usage_.phase_used[Vapour]) {
|
|
if (deck.hasField("PVDG")) {
|
|
if (samples > 0) {
|
|
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
|
|
} else {
|
|
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
|
|
}
|
|
// } else if (deck.hasField("PVTG")) {
|
|
// props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
|
|
} else {
|
|
THROW("Input is missing PVDG or PVTG\n");
|
|
}
|
|
}
|
|
|
|
SaturationPropsFromDeck<SatFuncGwsegNonuniform>* ptr
|
|
= new SaturationPropsFromDeck<SatFuncGwsegNonuniform>();
|
|
satprops_.reset(ptr);
|
|
ptr->init(deck, grid, -1);
|
|
|
|
if (phase_usage_.num_phases != satprops_->numPhases()) {
|
|
THROW("BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - "
|
|
"Inconsistent number of phases in pvt data (" << phase_usage_.num_phases
|
|
<< ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////
|
|
// Rock interface //
|
|
////////////////////////////
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int BlackoilPropsAdFromDeck::numDimensions() const
|
|
{
|
|
return rock_.numDimensions();
|
|
}
|
|
|
|
/// \return N, the number of cells.
|
|
int BlackoilPropsAdFromDeck::numCells() const
|
|
{
|
|
return rock_.numCells();
|
|
}
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* BlackoilPropsAdFromDeck::porosity() const
|
|
{
|
|
return rock_.porosity();
|
|
}
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* BlackoilPropsAdFromDeck::permeability() const
|
|
{
|
|
return rock_.permeability();
|
|
}
|
|
|
|
|
|
////////////////////////////
|
|
// Fluid interface //
|
|
////////////////////////////
|
|
|
|
/// \return Number of active phases (also the number of components).
|
|
int BlackoilPropsAdFromDeck::numPhases() const
|
|
{
|
|
return phase_usage_.num_phases;
|
|
}
|
|
|
|
/// \return Object describing the active phases.
|
|
PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const
|
|
{
|
|
return phase_usage_;
|
|
}
|
|
|
|
// ------ Density ------
|
|
|
|
/// Densities of stock components at surface conditions.
|
|
/// \return Array of 3 density values.
|
|
const double* BlackoilPropsAdFromDeck::surfaceDensity() const
|
|
{
|
|
return densities_;
|
|
}
|
|
|
|
|
|
// ------ Viscosity ------
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAdFromDeck::muWat(const V& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Water]) {
|
|
THROW("Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pw.size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs,
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
return mu;
|
|
}
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAdFromDeck::muOil(const V& po,
|
|
const V& rs,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
|
|
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(),
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
return mu;
|
|
}
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAdFromDeck::muGas(const V& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Gas]) {
|
|
THROW("Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pg.size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs,
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
return mu;
|
|
}
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Water]) {
|
|
THROW("Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pw.size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.value().data(), rs,
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
ADB::M dmudp_diag = spdiag(dmudp);
|
|
const int num_blocks = pw.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmudp_diag * pw.derivative()[block];
|
|
}
|
|
return ADB::function(mu, jacs);
|
|
}
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
|
|
const ADB& rs,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
|
|
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.value().data(), rs.value().data(),
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
|
|
ADB::M dmudp_diag = spdiag(dmudp);
|
|
ADB::M dmudr_diag = spdiag(dmudr);
|
|
const int num_blocks = po.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block];
|
|
}
|
|
return ADB::function(mu, jacs);
|
|
}
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Gas]) {
|
|
THROW("Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pg.value().size() == n);
|
|
V mu(n);
|
|
V dmudp(n);
|
|
V dmudr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rs,
|
|
mu.data(), dmudp.data(), dmudr.data());
|
|
|
|
ADB::M dmudp_diag = spdiag(dmudp);
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmudp_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(mu, jacs);
|
|
}
|
|
|
|
|
|
// ------ Formation volume factor (b) ------
|
|
|
|
// These methods all call the matrix() method, after which the variable
|
|
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
|
|
// a cell. For three-phase black oil:
|
|
// A = [ bw 0 0
|
|
// 0 bo 0
|
|
// 0 b0*rs bw ]
|
|
// Where b = B^{-1}.
|
|
// Therefore, we extract the correct diagonal element, and are done.
|
|
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
|
|
// we also get the following derivative matrix:
|
|
// A = [ dbw 0 0
|
|
// 0 dbo 0
|
|
// 0 db0*rs dbw ]
|
|
// Again, we just extract a diagonal element.
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAdFromDeck::bWat(const V& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Water]) {
|
|
THROW("Cannot call bWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pw.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Water]]->b(n, pw.data(), rs,
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
return b;
|
|
}
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAdFromDeck::bOil(const V& po,
|
|
const V& rs,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call bOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
|
|
props_[phase_usage_.phase_pos[Oil]]->b(n, po.data(), rs.data(),
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
return b;
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAdFromDeck::bGas(const V& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Gas]) {
|
|
THROW("Cannot call bGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pg.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Gas]]->b(n, pg.data(), rs,
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
return b;
|
|
}
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Water]) {
|
|
THROW("Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pw.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Water]]->b(n, pw.value().data(), rs,
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
ADB::M dbdp_diag = spdiag(dbdp);
|
|
const int num_blocks = pw.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dbdp_diag * pw.derivative()[block];
|
|
}
|
|
return ADB::function(b, jacs);
|
|
}
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
|
|
const ADB& rs,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
|
|
props_[phase_usage_.phase_pos[Oil]]->b(n, po.value().data(), rs.value().data(),
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
ADB::M dbdp_diag = spdiag(dbdp);
|
|
ADB::M dbdr_diag = spdiag(dbdr);
|
|
const int num_blocks = po.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block];
|
|
}
|
|
return ADB::function(b, jacs);
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Gas]) {
|
|
THROW("Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(pg.size() == n);
|
|
|
|
V b(n);
|
|
V dbdp(n);
|
|
V dbdr(n);
|
|
const double* rs = 0;
|
|
|
|
props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rs,
|
|
b.data(), dbdp.data(), dbdr.data());
|
|
|
|
ADB::M dbdp_diag = spdiag(dbdp);
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dbdp_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(b, jacs);
|
|
}
|
|
|
|
|
|
|
|
// ------ Rs bubble point curve ------
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V BlackoilPropsAdFromDeck::rsMax(const V& po,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call rsMax(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
V rbub(n);
|
|
V drbubdp(n);
|
|
props_[Oil]->rbub(n, po.data(), rbub.data(), drbubdp.data());
|
|
return rbub;
|
|
}
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
|
|
const Cells& cells) const
|
|
{
|
|
if (!phase_usage_.phase_used[Oil]) {
|
|
THROW("Cannot call rsMax(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
ASSERT(po.size() == n);
|
|
V rbub(n);
|
|
V drbubdp(n);
|
|
props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data());
|
|
ADB::M drbubdp_diag = spdiag(drbubdp);
|
|
const int num_blocks = po.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = drbubdp_diag * po.derivative()[block];
|
|
}
|
|
return ADB::function(rbub, jacs);
|
|
}
|
|
|
|
// ------ Relative permeability ------
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<V> BlackoilPropsAdFromDeck::relperm(const V& sw,
|
|
const V& so,
|
|
const V& sg,
|
|
const Cells& cells) const
|
|
{
|
|
const int n = cells.size();
|
|
const int np = numPhases();
|
|
Block s_all(n, np);
|
|
if (phase_usage_.phase_used[Water]) {
|
|
ASSERT(sw.size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Water]) = sw;
|
|
}
|
|
if (phase_usage_.phase_used[Oil]) {
|
|
ASSERT(so.size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Oil]) = so;
|
|
}
|
|
if (phase_usage_.phase_used[Gas]) {
|
|
ASSERT(sg.size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Gas]) = sg;
|
|
}
|
|
Block kr(n, np);
|
|
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), 0);
|
|
std::vector<V> relperms;
|
|
relperms.reserve(3);
|
|
for (int phase = 0; phase < 3; ++phase) {
|
|
if (phase_usage_.phase_used[phase]) {
|
|
relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase]));
|
|
} else {
|
|
relperms.emplace_back();
|
|
}
|
|
}
|
|
return relperms;
|
|
}
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<ADB> BlackoilPropsAdFromDeck::relperm(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const
|
|
{
|
|
const int n = cells.size();
|
|
const int np = numPhases();
|
|
Block s_all(n, np);
|
|
if (phase_usage_.phase_used[Water]) {
|
|
ASSERT(sw.value().size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Water]) = sw.value();
|
|
}
|
|
if (phase_usage_.phase_used[Oil]) {
|
|
ASSERT(so.value().size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Oil]) = so.value();
|
|
} else {
|
|
THROW("BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
|
|
}
|
|
if (phase_usage_.phase_used[Gas]) {
|
|
ASSERT(sg.value().size() == n);
|
|
s_all.col(phase_usage_.phase_pos[Gas]) = sg.value();
|
|
}
|
|
Block kr(n, np);
|
|
Block dkr(n, np*np);
|
|
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
|
|
const int num_blocks = so.numBlocks();
|
|
std::vector<ADB> relperms;
|
|
relperms.reserve(3);
|
|
typedef const ADB* ADBPtr;
|
|
ADBPtr s[3] = { &sw, &so, &sg };
|
|
for (int phase1 = 0; phase1 < 3; ++phase1) {
|
|
if (phase_usage_.phase_used[phase1]) {
|
|
const int phase1_pos = phase_usage_.phase_pos[phase1];
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
|
|
}
|
|
for (int phase2 = 0; phase2 < 3; ++phase2) {
|
|
if (!phase_usage_.phase_used[phase2]) {
|
|
continue;
|
|
}
|
|
const int phase2_pos = phase_usage_.phase_pos[phase2];
|
|
// Assemble dkr1/ds2.
|
|
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
|
|
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
|
|
}
|
|
}
|
|
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
|
|
} else {
|
|
relperms.emplace_back(ADB::null());
|
|
}
|
|
}
|
|
return relperms;
|
|
}
|
|
|
|
} // namespace Opm
|
|
|