opm-simulators/opm/autodiff/BlackoilPropsAdFromDeck.cpp
2013-05-31 14:57:04 +02:00

683 lines
26 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/props/pvt/SinglePvtInterface.hpp>
#include <opm/core/props/pvt/SinglePvtConstCompr.hpp>
#include <opm/core/props/pvt/SinglePvtDead.hpp>
#include <opm/core/props/pvt/SinglePvtDeadSpline.hpp>
#include <opm/core/props/pvt/SinglePvtLiveOil.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Units.hpp>
namespace Opm
{
// Making these typedef to make the code more readable.
typedef BlackoilPropsAdFromDeck::ADB ADB;
typedef BlackoilPropsAdFromDeck::V V;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
enum { Aqua = BlackoilPhases::Aqua,
Liquid = BlackoilPhases::Liquid,
Vapour = BlackoilPhases::Vapour };
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const bool init_rock)
{
if (init_rock){
rock_.init(deck, grid);
}
const int samples = 0;
const int region_number = 0;
phase_usage_ = phaseUsageFromDeck(deck);
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
if (phase_usage_.phase_used[Aqua]) {
densities_[phase_usage_.phase_pos[Aqua]] = d[ECL_water];
}
if (phase_usage_.phase_used[Vapour]) {
densities_[phase_usage_.phase_pos[Vapour]] = d[ECL_gas];
}
if (phase_usage_.phase_used[Liquid]) {
densities_[phase_usage_.phase_pos[Liquid]] = d[ECL_oil];
}
} else {
THROW("Input is missing DENSITY\n");
}
// Set the properties.
props_.resize(phase_usage_.num_phases);
// Water PVT
if (phase_usage_.phase_used[Aqua]) {
if (deck.hasField("PVTW")) {
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_));
} else {
// Eclipse 100 default.
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise));
}
}
// Oil PVT
if (phase_usage_.phase_used[Liquid]) {
if (deck.hasField("PVDO")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
} else {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
}
} else if (deck.hasField("PVTO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
} else if (deck.hasField("PVCDO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_));
} else {
THROW("Input is missing PVDO or PVTO\n");
}
}
// Gas PVT
if (phase_usage_.phase_used[Vapour]) {
if (deck.hasField("PVDG")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
} else {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
}
// } else if (deck.hasField("PVTG")) {
// props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
} else {
THROW("Input is missing PVDG or PVTG\n");
}
}
SaturationPropsFromDeck<SatFuncGwsegNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncGwsegNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, -1);
if (phase_usage_.num_phases != satprops_->numPhases()) {
THROW("BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - "
"Inconsistent number of phases in pvt data (" << phase_usage_.num_phases
<< ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int BlackoilPropsAdFromDeck::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropsAdFromDeck::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropsAdFromDeck::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropsAdFromDeck::permeability() const
{
return rock_.permeability();
}
////////////////////////////
// Fluid interface //
////////////////////////////
/// \return Number of active phases (also the number of components).
int BlackoilPropsAdFromDeck::numPhases() const
{
return phase_usage_.num_phases;
}
/// \return Object describing the active phases.
PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const
{
return phase_usage_;
}
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* BlackoilPropsAdFromDeck::surfaceDensity() const
{
return densities_;
}
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muWat(const V& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs,
mu.data(), dmudp.data(), dmudr.data());
return mu;
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muOil(const V& po,
const V& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(),
mu.data(), dmudp.data(), dmudr.data());
return mu;
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAdFromDeck::muGas(const V& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs,
mu.data(), dmudp.data(), dmudr.data());
return mu;
}
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->mu(n, pw.value().data(), rs,
mu.data(), dmudp.data(), dmudr.data());
ADB::M dmudp_diag = spdiag(dmudp);
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * pw.derivative()[block];
}
return ADB::function(mu, jacs);
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
const ADB& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
props_[phase_usage_.phase_pos[Oil]]->mu(n, po.value().data(), rs.value().data(),
mu.data(), dmudp.data(), dmudr.data());
ADB::M dmudp_diag = spdiag(dmudp);
ADB::M dmudr_diag = spdiag(dmudr);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block];
}
return ADB::function(mu, jacs);
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.value().size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rs,
mu.data(), dmudp.data(), dmudr.data());
ADB::M dmudp_diag = spdiag(dmudp);
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * pg.derivative()[block];
}
return ADB::function(mu, jacs);
}
// ------ Formation volume factor (b) ------
// These methods all call the matrix() method, after which the variable
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
// a cell. For three-phase black oil:
// A = [ bw 0 0
// 0 bo 0
// 0 b0*rs bw ]
// Where b = B^{-1}.
// Therefore, we extract the correct diagonal element, and are done.
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
// we also get the following derivative matrix:
// A = [ dbw 0 0
// 0 dbo 0
// 0 db0*rs dbw ]
// Again, we just extract a diagonal element.
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bWat(const V& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call bWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->b(n, pw.data(), rs,
b.data(), dbdp.data(), dbdr.data());
return b;
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bOil(const V& po,
const V& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call bOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
props_[phase_usage_.phase_pos[Oil]]->b(n, po.data(), rs.data(),
b.data(), dbdp.data(), dbdr.data());
return b;
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAdFromDeck::bGas(const V& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call bGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Gas]]->b(n, pg.data(), rs,
b.data(), dbdp.data(), dbdr.data());
return b;
}
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
THROW("Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
ASSERT(pw.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->b(n, pw.value().data(), rs,
b.data(), dbdp.data(), dbdr.data());
ADB::M dbdp_diag = spdiag(dbdp);
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * pw.derivative()[block];
}
return ADB::function(b, jacs);
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
const ADB& rs,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
props_[phase_usage_.phase_pos[Oil]]->b(n, po.value().data(), rs.value().data(),
b.data(), dbdp.data(), dbdr.data());
ADB::M dbdp_diag = spdiag(dbdp);
ADB::M dbdr_diag = spdiag(dbdr);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block];
}
return ADB::function(b, jacs);
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
THROW("Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
ASSERT(pg.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rs,
b.data(), dbdp.data(), dbdr.data());
ADB::M dbdp_diag = spdiag(dbdp);
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * pg.derivative()[block];
}
return ADB::function(b, jacs);
}
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V BlackoilPropsAdFromDeck::rsMax(const V& po,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call rsMax(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V rbub(n);
V drbubdp(n);
props_[Oil]->rbub(n, po.data(), rbub.data(), drbubdp.data());
return rbub;
}
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
THROW("Cannot call rsMax(): oil phase not present.");
}
const int n = cells.size();
ASSERT(po.size() == n);
V rbub(n);
V drbubdp(n);
props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data());
ADB::M drbubdp_diag = spdiag(drbubdp);
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = drbubdp_diag * po.derivative()[block];
}
return ADB::function(rbub, jacs);
}
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<V> BlackoilPropsAdFromDeck::relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = numPhases();
Block s_all(n, np);
if (phase_usage_.phase_used[Water]) {
ASSERT(sw.size() == n);
s_all.col(phase_usage_.phase_pos[Water]) = sw;
}
if (phase_usage_.phase_used[Oil]) {
ASSERT(so.size() == n);
s_all.col(phase_usage_.phase_pos[Oil]) = so;
}
if (phase_usage_.phase_used[Gas]) {
ASSERT(sg.size() == n);
s_all.col(phase_usage_.phase_pos[Gas]) = sg;
}
Block kr(n, np);
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), 0);
std::vector<V> relperms;
relperms.reserve(3);
for (int phase = 0; phase < 3; ++phase) {
if (phase_usage_.phase_used[phase]) {
relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase]));
} else {
relperms.emplace_back();
}
}
return relperms;
}
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<ADB> BlackoilPropsAdFromDeck::relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = numPhases();
Block s_all(n, np);
if (phase_usage_.phase_used[Water]) {
ASSERT(sw.value().size() == n);
s_all.col(phase_usage_.phase_pos[Water]) = sw.value();
}
if (phase_usage_.phase_used[Oil]) {
ASSERT(so.value().size() == n);
s_all.col(phase_usage_.phase_pos[Oil]) = so.value();
} else {
THROW("BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
}
if (phase_usage_.phase_used[Gas]) {
ASSERT(sg.value().size() == n);
s_all.col(phase_usage_.phase_pos[Gas]) = sg.value();
}
Block kr(n, np);
Block dkr(n, np*np);
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
const int num_blocks = so.numBlocks();
std::vector<ADB> relperms;
relperms.reserve(3);
typedef const ADB* ADBPtr;
ADBPtr s[3] = { &sw, &so, &sg };
for (int phase1 = 0; phase1 < 3; ++phase1) {
if (phase_usage_.phase_used[phase1]) {
const int phase1_pos = phase_usage_.phase_pos[phase1];
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
}
for (int phase2 = 0; phase2 < 3; ++phase2) {
if (!phase_usage_.phase_used[phase2]) {
continue;
}
const int phase2_pos = phase_usage_.phase_pos[phase2];
// Assemble dkr1/ds2.
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
for (int block = 0; block < num_blocks; ++block) {
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
}
}
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
} else {
relperms.emplace_back(ADB::null());
}
}
return relperms;
}
} // namespace Opm